簡易檢索 / 詳目顯示

研究生: 李銘晃
Li, Ming-Huang
論文名稱: CMOS-MEMS低運動阻抗微機械共振器陣列設計
Design of Low Motional Impedance CMOS-MEMS Micromechanical Resonator Arrays
指導教授: 李昇憲
Li, Sheng-Shian
口試委員: 鄭裕庭
Cheng, Yu-Ting
盧向成
Lu, Shiang-Cheng
邱一
Chiu, Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 81
中文關鍵詞: 金氧半導體微機電射頻微機電微機械共振器靜電換能溫度補償雙埠架構高Q值共振器功率負載能力機械耦合陣列
外文關鍵詞: CMOS-MEMS, RF-MEMS, micromechanical resonator, capacitive transduction, temperature compensation, two-port configuration, high Q resonator, power handling capability, mechanically-coupled array
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This work investigates the methods for lowering the motional impedance of CMOS-MEMS resonators and attaining high Q. The main ideas of motional impedance reduction used in this thesis are active gap reduction through electrostatic pull-in and mechanically-coupled arraying. The power handling enhancement and the passive temperature compensation is also discussed.
    The CMOS-MEMS clamped-clamped beam array resonators designed in this work have been demonstrated that takes advantage of pull-in effect to surmount limitations of CMOS foundry process and attains electrode-to-resonator gap spacing at a deep-submicron range, leading to much smaller motional impedance compared to conventional CMOS-MEMS technologies, while possessing unique frequency tuning capability by modulating their mechanical boundary conditions. With the increase of applied dc-bias voltage which simultaneously serves for functions of pull-in and resonator operation, the upward frequency shift of resonance caused by boundary condition change offers opposite tuning mechanism to well-known effect of electrical stiffness. Therefore, frequency variation induced by BC-modulation and electrical-stiffness would yield a frequency-insensitive region under a certain dc-bias.
    On the other hand, the integrated CMOS-MEMS free-free beam resonator arrays operated in a standard two-port electrical configuration simultaneously with low motional impedance and high power handling capability centered at 10.5 MHz have also been demonstrated by the combination of pull-in gap reduction mechanism and mechanically-coupled array design. The mechanical links (i.e., coupling elements) using short stubs connect each constituent resonator of an array to its adjacent ones at the high-velocity vibrating locations to accentuate the desired mode and reject all other spurious modes. A single second-mode free-free beam resonator with quality factor Q > 2,200 and motional impedance Rm < 150 k□ has been utilized to achieve mechanically-coupled resonator array. In array design, a 9-resonator array has been experimentally characterized to have around 10X performance improvement on motional impedance and power handling with respect to a single resonator. In addition, two-port electrical configuration is much preferred due to its low feedthrough nature and high design flexibilities for the future oscillator and filter implementations rather than its one-port counterpart.


    在本文中我們探討了一些特殊的設計方法試圖提升CMOS-MEMS微機械共振器的性能,使共振器具備低運動阻抗的特性並同時保有高品質因數。為了達成此目標,我們結合了靜電吸附效應與機械耦合陣列設計以減少靜電換能間隙並大幅提升共振器的換能面積以及等效剛性。本論文對於共振器的極限功率負載以及被動溫度補償也有所著墨。
    在論文中首先以CMOS-MEMS製程為平台開發出深次微米間隙雙鉗樑共振器陣列並探討其性能。藉由靜電吸附效應,我們能在傳統CMOS製程平台中實現深次微米換能間隙並大幅減少共振器的運動電阻。同時,在本設計中發生的邊界條件調變效應對於頻率的影響也已被定性的探討。我們也觀察到邊界條件調變效應與電致軟化效應兩種物理機制在不同的直流偏壓下會互相消長,最終會在特定的偏壓下產生一穩定頻率。
    此外,我們也利用相同的設計概念來設計雙端自由樑共振器,目標頻率約在10.5百萬赫茲。由於雙端自由樑共振器只藉由細小的支撐樑來連結共振器與外部支撐框架,因此能夠消除邊界條件調變效應所帶來的負面影響。在此研究中,我們適當的設計機械耦合樑的耦合位置,成功的解決共振器陣列中容易產生的多餘模態問題。本篇論文不僅設計出高性能CMOS-MEMS共振器,並探討了單一共振器、五個共振器耦合陣列與九個共振器耦合陣列在不同直流偏壓下的特性以及不同陣列中極限功率負載的變化。
    本文中所設計的高頻高Q值CMOS-MEMS微機械共振器非常適合作為振盪器或濾波器中的共振元件,其最終可與電路結合並應用於射頻電路或高性能數位電路當中,取代體積龐大的石英震盪器,以達成系統整合與體積縮小的目標。

    ABSTRACT i ACKNOWLEDGEMENTS iv CHAPTER 1. INTRODUCTION 1 1.1. Motivation for Micromachined Resonators 1 1.2. CMOS-MEMS Technology 3 1.3. Thesis Organization 5 CHAPTER 2. Micromechanical Resonator Modeling 7 2.1. Micromechanical Resonator Equivalent Circuit 7 2.1.1. Linear Lumped Mechanical Model 7 2.1.2. Parallel-Plate Capacitive Transduction 9 2.1.3. Two-port Network Equivalent Model at Port-1 11 2.1.4. Two-port Network Equivalent Model at Port-2 17 2.1.5. Complete Equivalent Circuit Model 18 2.2. Motional Impedance Reduction Techniques 20 2.2.1. Mechanically-Coupled Resonator Array 20 2.2.2. Electrode-to-Resonator Gap Reduction 21 2.3. Power Handling Capability of Electrostatic Resonators 23 2.4. Thermal Stability of the Micromechanical Resonators 24 CHAPTER 3. CMOS-MEMS Post-Process 26 3.1. Features of Generalized CMOS-MEMS Platform 27 3.2. Deep-Submicron Scheme for Out-of-Plane Resonators 28 CHAPTER 4. Deep-submicron Gap Clamped-Clamped Beam Resonator Array 30 4.1. Lumped Equivalent Circuit Modeling of CC-Beam 30 4.2. CMOS-MEMS Resonator Design and Operation 33 4.2.1. Fabrication Results 35 4.3. Measurement Results 38 CHAPTER 5. Mechanically-Coupled Free-Free Beam Resonator Arrays 41 5.1. Lumped Equivalent Circuit Modeling of FF-Beam 41 5.2. CMOS-MEMS FF-Beam Arrays in Two-Port Operation 44 5.2.1. Features of Free-Free Beam Resonator Arrays 44 5.2.2. Motional Impedance and Power Handling Capabilities 47 5.3. Fabrication Results 48 5.4. Experimental Setup and Device Operation 50 5.5. Single Free-Free Beam Measurement Results 51 5.6. FF-Beam Resonator Array Measurement Results 53 5.6.1. Transmission Characteristics 53 5.6.2. Power Handling Capability 55 5.6.3. Temperature Coefficient of Frequency 58 5.6.4. Operated in Atmospheric Condition 60 5.7. Concluding Remarks 60 CHAPTER 6. Conclusions and Future Work 62 6.1. Contributions 62 6.2. Future Work 64 Appendix: Low Impedance Square Plate Resonator 65 Reference: 76 VITA 81

    [1] C. T.-C. Nguyen, “MEMS technology for timing and frequency control,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 54, no. 2, pp. 251-270, Feb. 2007.

    [2] S.-S. Li, Y.-W. Lin, Y. Xie, Z. Ren, and Clark T.-C. Nguyen, “Micromechanical Hollow-Disk Ring Resonators,” Proceedings, 17th Int. IEEE Micro Electro Mechanical Systems Conf., Maastricht, The Netherlands, Jan. 25-29, 2004, pp. 821-824.

    [3] G. Piazza, P.J. Stephanou, J.P. Black, R.M. White, and A. P. Pisano, "Single-Chip Multiple-Frequency RF Microresonators based on Contour-Mode and FBAR Technologies," 2005 IEEE Ultrasonic Symposium, Rotterdam, pp. 1187 - 1190, 2005.

    [4] R. Abdolvand, H. Mirilavasani, G.K. Ho, and F. Ayazi, “Thin-Film Piezoelectric-on-Silicon Resonators for High-Frequency Reference Oscillator Applications,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Volume 55, Issue 12, December 2008, pp. 2596-2606.

    [5] A. Jain and H. Xie, “A Single-Crystal-Silicon Micromirror for Large Bi-directional 2D Scanning Applications,” Sensors and Actuators A, vol. 130-131, pp.454-460, 2006

    [6] F. Chen, J. Brotz, U. Arslan, C. Lo, T. Mukherjee, and G. Fedder, “CMOS-MEMS Resonant RF Mixer-Filters,“ Technical Digest, 18th IEEE International Conference on Microelectromechanical Systems (MEMS '05), pp. 24-27, Jan. 30-Feb. 3, 2005, Miami Beach, FL.

    [7] Chiung-Cheng Lo, “CMOS-MEMS Resonators for Mixer-Filter Applications,” PhD Dissertation, Carnegie Mellon University, July 2008

    [8] Teva, J., Abadal, G., Uranga, A., Verd, J., Torres, F., Lopez, J.L., Esteve, J., Perez-Murano, F., Barniol, N., “From VHF to UHF CMOS-MEMS monolithically integrated resonators ,” Tech. Digest, 21st IEEE International Conference on Microelectromechanical Systems (MEMS’08), Tucson, Arizona, Jan. 13-17, 2008, pp. 82-85.
    [9] Lopez, J.L., Verd, J., Uranga, A., Giner, J., Murillo, G., Torres, F., Abadal, G., and Barniol, N., “A CMOS-MEMS RF-tunable bandpass filter based on two high-Q 22-MHz polysilicon clamped-clamped beam resonators,” IEEE Electron Device Lett., 2009, 30, pp. 718–720

    [10] J. L. Lopez, J. Verd, E. Marigó, A. Uranga, G. Murillo, J. Giner, F. Torres, G. Abadal, and N. Barniol, “Monolithically Integrated Double-Ended Tuning Fork- Based Oscillator with Low Bias Voltage in Air Conditions,” Proceedings of the Eurosensors XXIII conference, 2009, pp. 614-617

    [11] J. L. Lopez et al., “Mixing in a 220MHz CMOS-MEMS,” Tech. Digest, IEEE International Symposium on Circuits and Systems (ISCAS), 2007, pp. 2630-2633

    [12] R. Ludwig and P. Bretchko, “RF Circuit Design: Theory and Applications,” Prentice Hall, Upper Saddle River, NJ: Prentice Hall, 2006.

    [13] Pourkamali Anaraki Siavash, “Electrically coupled MEMS bandpass filters,” Master Thesis, Georgia Institute of Technology, 2004

    [14] Clark T.-C. Nguyen, “Micromechanical signal processors,” PhD Dissertation, University of California at Berkeley, 1994

    [15] F. D. Bannon III, J. R. Clark, and C. T.-C. Nguyen, “High frequency micromechanical filters,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 512-526, April 2000.

    [16] K. Wang, A.-C. Wong, and C. T.-C. Nguyen, “VHF free-free beam high-Q micromechanical resonators,” IEEE/ASME J. Microelectromech. Syst., vol. 9, no. 3, pp. 347-360, Sept. 2000.

    [17] M. Demirci and C. T.-C. Nguyen, “Mechanically corner-coupled square microresonator array for reduced series motional resistance,” IEEE/ASME J. Microelectromech. Syst., vol. 15, no. 6, pp. 1419-1436, Dec. 2006.

    [18] S. Lee and C. T.-C. Nguyen, “Mechanically-coupled micromechanical arrays for improved phase noise,” Proceedings, IEEE Int. Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniv. Joint Conf., Montreal, Canada, Aug. 24-27, 2004, pp. 280-286.
    [19] W.-C. Chen, C.-S. Chen, K.-A. Wen, L.-S Fan, W. Fang, and S.-S. Li, “A generalized foundry CMOS platform for capacitively-transduced resonators monolithically integrated with amplifiers,” Proceedings, 23rd Int. IEEE Micro Electro Mechanical Systems Conf. (MEMS’10), Hong Kong, Jan. 24-28, 2010, pp. 204-207.

    [20] W.-C. Chen, M.-H. Li, W. Fang, and S.-S. Li, “Realizing deep-submicron gap spacing for CMOS-MEMS resonators with frequency tuning capability via modulated boundary conditions,” Proceedings, 23rd Int. IEEE Micro Electro Mechanical Systems Conf. (MEMS’10), Hong Kong, Jan. 24-28, 2010, pp. 735-738.

    [21] W.-C. Chen, M.-H. Li, W. Fang, and S.-S. Li, “High-Q integrated CMOS-MEMS resonators with deep-submicron gaps,” Proceedings, 2010 IEEE Int. Frequency Control Symposium, California, USA, June 1-4, 2010

    [22] Y.-W. Lin, S.-S. Li, Z. Ren, and C. T.-C. Nguyen, “Low phase noise array-composite micromechanical wine-glass disk oscillator,” Tech. Digest, IEEE Int. Electron Devices Mtg., Washington, DC, Dec. 5-7, 2005, pp. 287-290.

    [23] M. Agarwal, K. K. Park, B. Kim, M. A. Hopcroft, S. Chandorkar, R. N. Candler, C. M. Jha, R. Melamud, B. Murrman, and T. W. Kenny, " Amplitude Noise induced Phase Noise in MEMS Resonators," Solid-State Sensors, Actuators, and Microsystems Workshop, Hilton Head 06, Hilton Head, SC, USA, pp 90-93, 2006.

    [24] M. Agarwal, K. K. Park, R. N. Candler, M. Hopcroft, C. M. Jha, R. Melamud, B. Kim, B. Murmann, T. W. Kenny, "Non-Linearity Cancellation in MEMS Resonators for Improved Power-Handling," Tech. Digest, IEEE Int. Electron Devices Mtg., Washington, DC, Dec. 5-7, 2005, pp. 286-289..

    [25] M. Agarwal, “Nonlinearities and phase noise in electrically-transduced- MEMS-reonator based oscillator,” PhD Dissertation, Stanford University, 2007

    [26] Seungbae Lee, “Micromechanical Resonator Reference Oscillators for Wireless Communications,” PhD Dissertation, University of Michigan, Ann Arbor, 2006

    [27] J. C. Greenwood, "Silicon in mechanical sensors," Journal of Physics E: Scientific Instruments, pp. 1114-1128, 1988.

    [28] K. G. Lyon, G. L. Salinger, C. A. Swenson, and G. K. White, "Linear thermal expansion measurements on silicon from 6 to 340 K," Journal of Applied Physics, vol. 48, pp. 865-868, 1977.

    [29] C. M. Jha, “Thermal and mechanical isolation of ovenized MEMS resonator,” PhD Dissertation, Stanford University, 2008

    [30] M. U. Demirci, “Micromechanical composite array resonators and filters for communications, ” PhD Dissertation, University of Michigan, Ann Arbor, 2005

    [31] Agilent E5071C RF Network Analyzer Data Sheets

    [32] Y.-W. Lin, “Low phase noise micromechanical reference oscillators for wireless communications,” PhD Dissertation, University of Michigan, Ann Arbor, 2007.

    [33] W.-L. Huang, “Fully monolithic CMOS nickel micromechanical resonator oscillator for wireless communications,” PhD Dissertation, University of Michigan, Ann Arbor, 2008.

    [34] W.-C. Chen, W. Fang, and S.-S. Li, “A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits,” J. Micromech. Microeng., 21 (2011) 065012.

    [35] M.-H. Li, W.-C. Chen, and S.-S. Li, “Mechanically-coupled CMOS-MEMS free-free beam resonator arrays with two-port configuration,” 2011 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum, San Francisco, May 2-5, 2011, pp. 16-19.

    [36] W.-C. Chen, W. Fang, and S.-S. Li, “Quasi-linear frequency tuning for CMOS-MEMS resonators,” Proceedings, 24th Int. IEEE Micro Electro Mechanical Systems Conf. (MEMS 2011), Cancun, Mexico, pp. 784-787, Jan. 2011.

    [37] J. L. Lopez, et al., “Integration of RF-MEMS resonators on submicrometric commercial CMOS technologies,” J. of Micromech. Microeng., 19 (2009) 015112.

    [38] K.-L. Chen, et al., “Encapsulated out-of-plane differential square-plate resonator with integrated actuation electrodes,” Tech. Digest, Transducers’09, 2009, pp.1421-1424.

    [39] M. Shahmohammadi, B.P. Harrington, and R. Abdolvand; “Concurrent enhancement of Q and power handling in multi-tether high-order extensional resonators,” Proc. IEEE MTT-S International Microwave Symposium, Anaheim, CA, 23-28 May 2010, pp.1452-1455.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE