簡易檢索 / 詳目顯示

研究生: 劉建宏
Liu, Chien-Hung
論文名稱: 膠態電解質染料敏化太陽能電池之長效性研究
Development of long-term stability of gel electrolyte dye-sensitized solar cells
指導教授: 陳福榮
蔡春鴻
口試委員: 陳福榮
蔡春鴻
丁志明
呂志鵬
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 81
中文關鍵詞: 染敏電池自發性膠化溶解式元件高分子紫外線吸收劑效率長效性
外文關鍵詞: Dye-sensitized solar cell, gel-type electrolyte, long-term stability, UV absorber, Polyvinyl butyral(PVB)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,染料敏化太陽能電池(Dye-sensitized Solar Cells)在元件壽命長效性的表現上遇到了許多瓶頸。其中,液態電解質的漏液問題一直為眾人所關注,為此科學家們研發出膠態以及固態電解質的染料敏化太陽能電池,期望藉由具有較低揮發性的電解質來改善此問題,但此二類電解質對於工作電極的滲透性不足之問題仍待解決。除此之外,紫外線對於染料敏化太陽能電池壽命長效性表現的影響也不容忽視,由於電池中的工作電極(TiO2)對於紫外線的吸收力強,易導致接觸在工作電極表面的染料與電解液氧化而影響了電池的壽命。本實驗將針對此兩項問題,提出一套新式的抗紫外線自發性膠化電解質的製程應用於染料敏化太陽能電池上,改善了電池的效率以及長效性的表現。
    本實驗將固定比例的紫外線吸收劑(UV Absorber)摻入液態電解質當中,利用高分子薄膜在電池元件內部自發性溶解於液態電解液後,形成了抗紫外線膠態電解質元件,而這種自發性的電解質膠化過程改善了膠態電解質對於工作電極的滲透性。我們對其做掃描式電子顯微鏡分析(SEM)、電流-電壓輸出特性量測(I-V Curve)、電化學交流阻抗分析(EIS)以及電池元件長效性分析(Long-term Stability)。研究結果顯示,於液態電解質中添加紫外線吸收劑以及高分子,能夠減少電子再復合的機率而提升開路電壓(Voc),另一方面則會增加電池的內部阻抗而降低了短路電流(Jsc)。整體效率而言,由於對工作電極有較佳滲透性,自發性膠化的“溶解式”膠態電解質元件在光電轉換效率的表現會優於一般製程的膠態電解質元件。此外,在摻入紫外線吸收劑後,減少了紫外線對於元件的傷害,明顯改善了電池元件長效性的表現。根據實驗結果證明,本實驗對於提升染料敏化太陽能電池之實用性的研究有所貢獻。
    關鍵字: 染敏電池、自發性膠化、溶解式元件、高分子、紫外線吸收劑、效率長效性。


    There are some bottlenecks for long-term stability of the liquid electrolyte based Dye-Sensitized Solar Cell (DSSC). Here we list two of the major problems leading poor long-term stability of devices : 1. The leakage of liquid electrolyte. 2. The damage of the device by ultraviolet irradiation.
    In this study, a new fabrication process for in-situ gel electrolyte DSSC is achieved in order to solve both the leakage problem of liquid electrolyte and the penetrating problem of gel electrolyte at the same time. To fabricate UV-protection in-situ gel electrolyte DSSC, the UV-protection electrolyte was prepared by mixing the UV absorber in certain percentage with liquid electrolyte(GBL-based) first. Polyvinyl butyral(PVB) was placed in the device before the injection of the UV-protection electrolyte, and dissoved in the liquid electrolyte to form the gel electrolyte spontaneously. The conversion efficiency recorded for the GBL-based electrolyte with 10wt% PVB and 5wt% UV absorber is 4.27%, which is about 85% of the liquid-type one, with values of Voc, Jsc, and FF of 0.73 (V), 11.73 (mA/cm2) and 0.5, respectively. Most important of all, the UV- protection in-situ gel electrolyte DSSC exhibits a well long-term stability, surprising 95% of its originl efficiency after 1000 working hours. With the high durability, resulting in the DSSC outdoor application in the near future.

    Key word: Dye-sensitized solar cell, gel-type electrolyte, long-term stability,
    UV absorber, Polyvinyl butyral(PVB)

    目錄...................................................................iii 圖目錄.................................................................vi 表目錄.................................................................ix 第一章 緒論.......................................................1 1-1 研究背景............................................................1 1-2 太陽能電池.........................................................1 1-2-1 簡介................................................................1 1-2-2 太陽能電池分類......................................................2 1-2-3 染料敏化太陽能電池的發展............................................3 1-3 研究動機與研究問題................................................3 1-3-1 研究動機............................................................3 1-3-2 研究問題............................................................4 第二章 文獻回顧.................................................7 2-1 太陽能電池..........................................................7 2-1-1 有機太陽能電池簡介..................................................7 2-1-2 染料敏化太陽能電....................................................8 A.工作原理..........................................................8 B.電池結構..........................................................9 2-1-3 染料敏化太陽能電池之量測分析.......................................14 A.太陽光強度.......................................................14 B.電流-電壓輸出特性................................................14 C.太陽能電池枝等效電路圖...........................................15 2-2 高分子電解質...................................................... 15 2-3 染料敏化太陽能電池製程...........................................17 2-4 紫外線吸收劑......................................................19 第三章 實驗方法與原理......................................30 3-1 實驗大綱...........................................................30 3-2 實驗流程...........................................................30 3-3 實驗步驟...........................................................31 3-3-1 導電玻璃基材清洗...................................................31 3-3-2 網印法製備工作電極.................................................31 3-3-3 網印法製備背電極...................................................31 3-3-4 製備膠態電解質 & 熱壓高分子PVB薄膜................................31 3-3-5 浸泡染料...........................................................32 3-3-6 電池原件熱壓封裝...................................................32 3-3-7 注入電解液與背電極孔洞封裝.........................................32 3-4 儀器量測與分析原理...............................................33 3-4-1 分析項目與實驗儀器.................................................33 3-4-2 分析原理...........................................................33 第四章 實驗結果與討論....................................53 4-1 膠態電解質元件特性分析...........................................53 4-1-1 工作電極物性分析...................................................53 A.場發射槍掃描式電子顯微鏡分析.....................................53 B. X-ray繞射圖譜分析...............................................54 4-1-2 電解質電性分析.....................................................54 A.摻入不同比例PVB之電解質離子導電度分析..........................54 B.摻入不同比例PVB之電解質離子擴散系數分析........................55 C. 電解質電性分析結論..............................................56 4-1-3 電池元件量測分析...................................................56 A. 光電轉換效率分析................................................56 B. 電化學交流阻抗分析..............................................58 C. 單位頻率光子-電子轉換效率分析...................................59 D. 電池元件量測分析結論............................................59 4-1-4 電池元件長效性量測分析.............................................60 4-2 抗紫外線之膠態電解質元件特性分析................................60 4-2-1 摻入紫外線吸收劑之膠態電解質元件效率分析...........................60 4-2-2 摻入紫外線吸收劑之膠態電解質元件效率長效性分析.....................61 4-2-3 抗紫外線膠態電解質元件之長效性表現結論.............................63 第五章 結論.......................................................75 第六章 參考文獻................................................76 圖目錄 圖1-1 能源使用分布圖......................................................5 圖1-2 太陽能電池的種類....................................................5 圖1-3 不同世代太陽能電池在效率及成本上的優劣較............................6 圖2-1 塊材異質介面使激子分離區域擴大為整個主動層示意圖...................20 圖2-2 染料敏化太陽能電池工作原理.........................................20 圖2-3染料敏化太陽能電池中產生電子再結合的機制...........................21 圖2-4 工作電極能階圖.....................................................21 圖2-5 奈米多孔膜電極電子-電洞分離、電子傳遞示意圖.........................22 圖2-6 不同空氣質量值的太陽光圖譜.........................................22 圖2-7 理想的情況下之光電轉換效率圖.......................................23 圖2-8 矽基板太陽能電池的等效電路圖.......................................23 圖2-9 矽太陽能電池之電流-電壓曲線(a)以Rs為變數 (b)以Rsh為變數............24 圖2-10 染敏電池的各種正、逆反應的耗時.....................................24 圖2-11 大面積染料敏化太陽能電池外貌......................................25 圖2-12 大面積染敏電池模組剖面圖..........................................25 圖2-13 抽真空注入電解質程序示意圖........................................26 圖2-14二氧化鈦吸收光圖譜................................................26 圖2-15紫外線吸收劑外貌..................................................27 圖3-1 膠態電解質元件簡易實驗流程圖.......................................42 圖3-2 抗紫外線溶解式膠態電解質元件簡易實驗流程圖.........................43 圖3-3a 網印機外觀........................................................44 圖3-3b 網印法示意圖......................................................44 圖3-3c 工作電極示意圖....................................................44 圖3-4 退火程序圖.........................................................45 圖3-5 注入式元件白金背電極示意圖.........................................45 圖3-6 溶解式元件白金背電極示意圖.........................................45 圖3-7注入式元件之膠態電解質.............................................45 圖3-8充分吸附染料後的工作電極...........................................45 圖3-9 注入式元件熱壓製程示意圖...........................................46 圖3-10 溶解式元件熱壓製程示意圖..........................................46 圖3-11 膠態電解質電池元件外貌............................................47 圖3-12 交流阻抗頻譜示意圖................................................47 圖 3-13高分子膠態電解質的導電度量測示意圖................................48 圖3-14單位頻率光子-電子轉換效率分析儀之內結構............................48 圖3-15單位頻率光子-電子轉換效率分析儀之調節裝置..........................49 圖3-16 全波段入射光子轉換效率量測示意圖..................................49 圖3-17 頻率為ω下交流電流和電壓的關係....................................50 圖3-18 液態型染料敏化太陽電池之交流阻抗頻譜..............................50 圖3-19 染敏電池之電化學交流阻抗等效電路圖................................51 圖3-20 太陽光模擬器外觀..................................................51 圖3-21 空氣質量示意圖....................................................52 圖4-1(a) 工作電極SEM俯視圖(3000倍).....................................64 圖4-1(b) 工作電極SEM俯視圖(100K倍).....................................64 圖4-2工作電極SEM剖面圖(3000倍).........................................65 圖4-3 工作電極之X光繞射圖譜.............................................65 圖4-4 不同比例PVB電解質之交流阻抗頻譜..................................66 圖4-5 不同比例PVB電解質之循環伏安曲線..................................67 圖4-6 各項參數電解質元件光電轉換效率曲線.................................68 圖4-7 各項參數電解質元件之交流阻抗頻譜圖.................................69 圖4-8 各項參數電解質元件之單位頻率光子-電子轉換效率曲線..................70 圖4-9 各項參數電解質元件長效性曲線.......................................70 圖4-10 不同比例紫外線吸收劑之膠態電解質元件光電轉換效率圖................71 圖4-11 紫外線照射對於染敏電池元件長效性影響曲線圖........................72 圖4-12 不同比例紫外線吸收劑之膠態電解質元件效率長效性曲線................72 圖4-13 本實驗各類型元件長效性比較........................................73 圖4-14開路電壓隨著時間改變之曲線........................................73 圖4-15短路電流隨著時間改變之曲線........................................74 圖4-16填充因子隨著時間改變之曲線........................................74 表目錄 表1-1 各種太陽電池效率比較................................................6 表2-1 有機高分子太陽能電池整理...........................................28 表2-2 不同有機溶劑應用於染敏電池的特性...................................28 表2-3 各類高分子整理.....................................................29 表4-1 不同比例PVB電解質之阻抗與離子導電度...............................66 表4-2 不同比例PVB電解質之極限電流與離子擴散系數.........................67 表4-3 元件數據特性分析...................................................68 表4-4 各項參數電解質元件中各層阻抗值.....................................69 表4-5 抗紫外線元件數據特性分析...........................................71

    [1]王釿鋊”染料半導體光電池”,中技社通訊, 41, 5 ( 2002)
    [2] http://physicsworld.com/cws/article/print/30345/1/PWbri2_01-05
    [3] B. Oregan; M. Gratzel; Nature 353, 737 (1991).
    [4] C.D. Grant; A.M. Schwartzberg; G.P. Smestad; J. Kowalik; L.M. Tolbert;
    J.Z.Zhang, J. Electroanal. Chem. 522, 40(2002).
    [5] M.K. Nazeeruddin; A. Kay; I. Rodicio; R. Humphrybaker; E. Muller; P. Liska;
    N. Vlachopoulos; M. Gratzel, J. Am. Chem. Soc. 115, 6382(1993).
    [6] Yella A.; Lee H. W.; Tsao H. N.; et al., Science 334 ,629-634(2011).
    [7] Zhipeng Huo; Songyuan Dai*; Kongjia Wang; Fantai Kong; Changneng Zhang;
    Xu Pan; Xiaqin Fang, ScienceDirect. 1959-1965(2007).
    [8] C.W. Tang et al. App. Phys. Lett. 48, 183 (1986)
    [9] M. Grätzel﹐Nature, 414, 338 (2001).
    [10] M. Gratzel, J. Photochemistry& Photobiology, 164, 3(2004).
    [11] A. Hagfeldt ; M. Gratzel﹐Chem. Rev., 95, 49(1995).
    [12] K. Kalyanasundaram ; M. Gratzel, Coord. Chem. Rev. 1998, 177, 347.
    [13] M. Gratzel; Current Opinion in Colloid and Interface Science, 4, 314(1999).
    [14] Cahen et al.﹐J.Phys.Chem. B, 104, 2053 (2000).
    [15] A. Fujishima et al.﹐Sol. Energy Mater. Sol. Cells, 81, 197(2004).

    [16] Shogo Nakade﹔Yohei Makimoto﹔Wataru Kubo﹔Takayuki Kitamur﹔
    Yuji Wada; Shozo Yanagida﹐J. Phys. Chem. B, 109, 3480(2005).
    [17] Michael Gratzel, Nature, 414, 338-414(2001)
    [18] Md. K. Nazeeruddin; S.M. Zakeeruddin; J.J. Lagref; P. Liska; P. Comte; C. Barolo;
    G. Viscardi; K. Schenk; M. Graetzel, Coordination Chemistry Reviews.,248, 1317(2004)
    [19] Suzanne Ferrere, Inorganica Chimica Acta., 329, 79-92(2002)
    [20] Hervé Zabri; Fabrice Odobel; S. Altobello; S. Caramori; C.A. Bignozzi,
    Journal of Photochemistry and Photobiology A: Chemistry, 166, 99(2004)
    [21] Takurou N. Murakami; Seigo Ito; Qing Wang; Md. Khaja Nazeeruddin; Takeru Bessho; Ilkay Cesar; Paul Liska; Robin Humphry-Baker; Pascal Comte; Péter Péchy;
    Michael Grätzel, Journal of The Electrochemical Soc., 153(12), A2255-A2261 (2006)
    [22] Yuh-Lang Lee; Yu-Jen Shen; Yu-Min Yang, Nanotechnology 19, 455201 (2008)
    [23] Jae Pil Lee; Beomjin Yoo; T. Suresh; Moon Sung Kang; R.Vital; Kang-Jin Kim;
    Electrochimica Acta 54 ,4365–4370(2009)
    [24] Hongxun Yang; Miaoliang Huang; Jihuai Wu; Zhang Lan; Sancun Hao; Jianming Lin, Materials Chemistry and Physics 110, 38–42(2008).
    [25] Woosung Kwon; Shi-Woo Rhee, Journal of Power Sources 196,10532–10537 (2011).
    [26] Pramod K. Singh; Kang-Wook Kim; Hee-Woo Rhee, S. Metals 159,1538–1541(2009)
    [27] K. Tennakone; GRRA Kumara; IRM Kottegoda; KGU Wijayantha; VPS Perera,
    J. Phys. D: Appl. Phys., 31, 1492–1496 (1998)

    [28] S. Y. Huang; G. Schlichtholrl; A. J. Nozik; M. Gratzel; A. J. Frank,
    J. Phys. Chem. B., 101, 2576-2582 (1997)
    [29] Wataru Kubo; Shingo Kambe; Shogo Nakade; Takayuki Kitamura; Kenji Hanabusa; Yuji Wada; Shozo Yanagida, J. Phys. Chem. B, 107, 4374-4381 (2003)
    [30] Chem. Rev. 2010, 110, 6595–6663
    [31] Rod Scott, Technical Director, BP Solar (1995)
    [32] J.Neison, “The Physics of Solar Cells”
    [33] 莊嘉琛,太陽能電池工程-太陽電池篇,全華科技圖書股份有限公司,(1997)
    [34] Fenton, D. E.; Parker, J. M.; Wright, P. V., Polymer, 14, 589 (1973).
    [35] Wright, P. V., Polymer, 7, 319(1975)
    [36] Armand, M. B.; J. M. Chabagno; M. J. Duclot; Second International
    Meeting on Solid Electrolytes, St. Andrews, Scotland, September,20-22 (1978).
    [37] Weston, J. E.; Steele, B. C. H., Solid State Ionics, 2, 347(1981)
    [38] Berthier, C.; Gorecki, W.; Minier, M.; Armand, M.B.; Chabagno, J.M.;Rigaud, P.,
    Solid State Ionics, 11, 91(1983)
    [39] Shriver, D. F.; Ratner, M. A.; Chem. Rev.,88, 109(1988)
    [40] Bruce, P. G.; Electrochimica Acta, , 40(13-14), 2077(1995)
    [41] Christie, A. M.; Lisowska, O. A.; Vincent, C. A.,
    Electrochimica Acta, 40(13-14), 2405(1995)
    [42] Christie, L.; Los, P.; Bruce, P. G., Electrochimica Acta,40,13-14,2159(1995)

    [43] Le Granvalet-Mancini M.; Hanrath, T.; Teeters, D.,
    Solid State Ionics,135(1-4), 283(2000)
    [44] Borghini, M. C.; Mastragostino, M.; Zanelli, A., J. of Power Sources,68(1), 52(1997)
    [45] Benrabah, D.; Sanchez, J. Y.; Armand, M., Solid State Ionics,60, 87(1993)
    [46] Benrabah, D.; Sanchez, J. Y.; Deroo, D.; Armand, M.,
    Solid State Ioniic,70/71, 157(1994)
    [47] Kao, H. M.; Tsai, Y. Y.; Chao, S. W., Solid State Ionics,176(13-14), 1261(2005)
    [48] Rajendran, S.; Mahendran, O.; Kannan, R.,
    Journal of Physics and Chemistry of Solids,63(2), 303(2002)
    [49] Itoh, T.; Horii, S.; Uno, T.; Kubo, M.; Yamamoto, O.,
    Electrochimica Acta,50(2-3), 271(2004)
    [50] Ramesh, S.; Arof, A.K., Materials Science and Engineering: B,85(1), 11(2001)
    [51] Wang, Q.; Gao, J.; Qian, Y., European Polymer Journal,32(3),299(1996)
    [52] Aldissi, M., Journal of Power Sources,94(2), 219(2001)
    [53] Morales, E.; Acosta, J. L., Solid State Ionics,111(1-2), 109(1998)
    [54] Park, C. H.; Kim, D. W.; Prakash, J.; Sun, Y. K., Solid State Ionics,159(1-2), 111(2003)
    [55] Forsyth, M.; Meakin, P. M.; MacFarlane, D. R.,
    Electrochimica Acta, 40(13-14), 2339(1995)
    [56] Rajendran, S.; Sivakumar, M.; Subadevi, R., Materials Letters,58(5), 641(2004)
    [57] Qian, X.; Gu, N.; Cheng, Z.; Yang, X.; Wang, E.; Dong, S.,
    Materials Chemistry and Physics,74(1), 98(2002)
    [58] Edelmann, K.; Sandner, B., Solid State Ionics,170(3-4), 225(2004)
    [59] Pradhan, D. K.; Samantaray, B. K.; Choudhary, R. N. P.; Thakur, A. K.,
    Journal of Power Sources,139(1-2), 384 (2005)
    [60] Yang , X. Q.; Lee, H. S.; Hanson, L.; McBreen, J.; Okamoto, Y.,
    Journal of Power Sources,54(2), 198(1995)
    [61] Michael, M. S.; Jacob, M. M. E.; Prabaharan, S. R. S.; Radhakrishna,S.,
    Solid State Ionics,98(3-4), 167(1997)
    [62] Seigo Ito; Takurou N. Murakami; Pascal Comte; Paul Liska; Carole Grätzel;
    Mohammad K. Nazeeruddin; Michael Grätzel; Thin Solid Films 516,4613–4619(2008)
    [63] Won Jae Lee; Easwaramoorthi Ramasamy; Dong Yoon Lee; Jae Sung Song
    Solar Energy Materials & Solar Cells 91,1676–1680(2007)
    [64] Easwaramoorthi Ramasamy; Won Jae Lee; Dong Yoon Lee; Jae Sung Song
    Journal of Power Sources 165,446–449(2007)
    [65] Matteo Biancardo; Keld West; Frederik C. Krebs,
    Solar Energy Materials & Solar Cells 90,2575–2588(2006)
    [66] Songyuan Dai; Kongjia Wang; Jian Weng; Yifeng Sui; Yang Huang; Shangfeng Xiao; Shuanghong Chen; Linhua Hu; Fantai Kong; Xu Pan; Chengwu Shi; Li Guo,
    Solar Energy Materials & Solar Cells 85 ,447–455 (2005)
    [67] Won Jae Lee; Easwaramoorthi Ramasamy; Dong Yoon Lee; Jae Sung Song
    Journal of Photochemistry and Photobiology A: Chemistry 183 ,133–137(2006)
    [68] SPD Laboratory Inc. HI-Cube Wajiyama, Hamamatsu 432-8003, JAPAN
    [69] 李元智/工業材料雜誌255期 染料敏化電池與模組近況介紹
    [70] Hilger, A.; Bristol, “Electrical Impedance Tomography” 1990
    [71] 林亞秀,國立成功大學化學工程學系 碩士論文(2009)
    [72]曾友利,國立清華大學 化學學系 碩士論文(2009)
    [73]王子中,國立交通大學 材料科學與工程系 碩士論文(2009)
    [74] Z. Lan, J. H. Wu, J. M. Lin, M. L. Huang, S. Yin, T. Sato.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE