簡易檢索 / 詳目顯示

研究生: 黃昱銘
Huang, Yu-Ming
論文名稱: 寬頻混沌訊號產生器設計與分析
Design and Characterization of a Broadband Chaotic Signal Generator
指導教授: 林凡異
Lin, Fan-Yi
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 47
中文關鍵詞: 混沌訊號產生器
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用AT41486雙極接面型電晶體(Bipolar Junction Transistor, BJT)實作一可產生混沌訊號的考畢子(Colpitts)
    振盪器,其有效頻寬可達微波頻段(microwave region),空間解析度(range resolution)可達約 5cm,並可產生豐富的非線性動態,但其訊號相關性(correlation)卻有很多sidelobe,這將使得雷達偵測容易出錯,此是由於混沌訊號的頻譜不夠平坦及平滑所造成,因此在本論文中也嘗試模擬兩種方式,看是否能得到更好的混沌訊號相關性(correlation)。
    一是藉由傳統濾波器的方式,模擬混沌訊號經柴比雪夫(Chebyshev)低通濾波器的結果,觀察其頻譜以及相關性曲線(correlation curve)。由於柴比雪夫(Chebyshev)濾波器在導通頻帶(pass band)
    有等效漣波(equal ripple)存在,因此仍無法完全消除相關性曲線
    的sidelobe。
    另一種方式則是模擬光電回授複合系統(optoelectronic feedback hybrid system)。半導體雷射輸出的光訊號經由光偵測器接收並轉換成電流訊號,經適當的放大及衰減,將電訊號回授並驅動半導體雷射,藉由調整操作參數,系統可以操作在不同的狀態區,例如規則脈衝區(Regular Pulsing, RP)及混沌脈衝區(Chaotic Pulsing, CP),在此同時我們將考畢子(Colpitts)振盪器產生的調變訊號注入光電回授系統,將造成半導體雷射載子濃度(carrier density)的改變,進而產生新的混沌訊號,有四個調變組合方式可產生混沌訊號:
    (1)週期一(Period-1, P1)振盪訊號直接調變雷射規則脈衝區
    (Regular Pulsing, RP)、(2)混沌振盪(Chaotic Oscillation, CO)訊號直接調變雷射規則脈衝區(Regular Pulsing, RP)
    、(3)週期一(Period-1, P1)振盪訊號直接調變雷射混沌脈衝區(Chaotic Pulsing, CP)、(4)混沌振盪(Chaotic Oscillation, CO)訊號直接調變雷射混沌脈衝區(Chaotic Pulsing, CP),經由模擬結果可得知混沌振盪訊號直接調變混沌脈衝區可產生相關性較好的訊號,雖然同樣無法完全消除相關性曲線的sidelobes,但相較於傳統濾波器方式,其具有較低的相關性,因此可增加雷達容許雜訊的空間,降低偵測錯誤的機率。

    %半導體雷射可直接電流調變的特性,將電路產生訊號驅動雷射後經由光偵測器接收後回授,藉此使得半導體雷射載子密度
    %(carrier density)產生變化,分別分析在四種調變方式下的訊號變化:(1)P1(period-1)振盪訊號直接%調變RP(Regular Pulsing)狀態區(2)P1(period-1)振盪訊號直接調變CP(Chaotic Pulsing)狀態區
    %(3)混沌(Chaotic)振盪訊號直接調變RP(Regular Pulsing)狀態區(4)混沌振盪(Chaotic Oscillation;CO)訊號直接調變CP(Chaotic Pulsing)狀態區,經由模擬結果可得知第四種調變方式可產生較好correlation特性的訊號,雖然同樣無法完全消除相關性曲線的sidelobe,但相較於傳統濾波器方式,其Peak Sidelobe Level更低,因此可增加雷達容許雜訊的空間,降低偵測錯誤的機率。


    We implemented a chaotic Colpitts oscillator with an AT41486 bipolar junction transistor. Experimental results indicate that, chaotic signals can be obtained with wide bandwidths in the microwave band. A range resolution of about 5 cm is obtained for potential application. The microwave Colpitts oscillator exhibits rich nonlinear dynamical behaviours. But the correlation curve of the chaotic signal show many sidelobes which makes the unambiguous detection difficult. This is because the spectrum of the chaotic signal is not very flat and smooth. Therefore we try to get better characteristics of the chaotic signal through simulating two schemes.
    The first scheme uses a filter as the tranditional way. By simulating the filtered results of chaotic signal through the Chebyshev low pass filter, we find that the sidelobes of the correlation curve are not substantially lowered.
    The second scheme uses an optoelectronic feedback hybrid system. The optical output from a semiconductor laser is fed back to itself optoelectronically with a fixed DC bias current. By tuning the operating parameters, this system can be operated in different instable regions. For instances, regular pulsing (RP) region and chaotic pulsing (CP) region. Simultaneously, the modulation signal from Colpitts oscillator into optoelectronic feedback system, which will alter the carrier density of the semiconductor laser. There are four schemes used to generate the modified chaotic signals: (1) period-1 oscillation (P1) signal direct current modulating on regular pulsing region (RP) of the laser, (2) chaotic oscillation (CO) signal direct current modulating regular pulsing region (RP) of the laser, (3) period-1 oscillation (P1) signal direct current modulating on chaotic pulsing region (CP) of the laser, and (4) chaotic oscillation (CO) signal direct current modulating chaotic pulsing region (CP) of the laser. We find that the fourth scheme has the best correlation characteristic among them. Although the sidelobes of the correlation curve can not be eliminated completely, the second scheme has better correlation characteristic than the first. Therefore, it can increases noise tolerance of a radar system and reduces probability of making a detection mistake.

    1 介紹5 1.1 背景. . . . . . . . . . . . . . . . . . . . . . 5 1.2 動機. . . . . . . . . . . .. . . . . . . . . . . 6 2 考畢子振盪器原理 7 2.1 振盪原理介紹. . . . . . . . . . . . . . .. . . . 7 2.2 混沌考畢子振盪器架構及電路模型. . . . . . .. . . 8 2.3 效能指標. . . . . . . . . . . . . . . . .. . . . . . . . . 11 3 電路之實作與量測結果 12 3.1 混沌考畢子振盪器設計. . . . . . . . . . . . . . 12 3.2 量測結果. . . . . . . . . . . . . . . . . . . . 14 3.2.1 混沌考畢子振盪器量測結果. . . . . . . . . . . 14 3.2.2 混沌考畢子振盪器遲滯現象. . . . . .. . . . . . 17 3.2.3 渾沌振盪訊號相關性曲線特性. . . . . . .. . . . 18 3.3 渾沌考畢子振盪器驅動雷射動態量測. . . . .. . . . 21 3.3.1 量測架構. . . . . . . . . . . . . . . .. . . . 21 3.3.2 雷射特性評估. . . . . . . . . . . . . . . . . . . .... . . . . 22 3.3.3 考畢子振盪器驅動雷射量測結果. . . . . . . . . 24 3.4 小結. . . . . . . . . . . . . .. . . . . . . . . 27 4 光電回授複合系統28 4.1 光電回授系統介紹. . . . . . . . . . . . . . . . 28 4.2 光電回授複合系統. . . . . . . . . . . . . . . . 31 4.3 雷射規則脈衝區. . . . . . . . . . . . . . . . . 33 4.3.1 週期一振盪訊號直接調變. . . . . . . . . . . . 33 4.3.2 混沌振盪訊號直接調變. . . . . . . . . . .. . . 35 4.4 雷射混沌脈衝區. . . . . . . . . . .. . . . . . . 37 4.4.1 週期一振盪訊號直接調變. . . . . . . . . . . . 37 4.4.2 混沌振盪訊號直接調變. . . . . . . . . . . . . 39 4.5 小結. . . . . . . . . . . . . . . . .. . . . . . 41 5 結論與未來展望 42

    [1] Z. G. Shi, S. Qiao, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, L. X. Ran, "Ambiguity functions of direct chaotic radar employing microwave chaotic colpitts oscillator,"
    Progress In Electromagnetics Research, PIER 77, 1-14 (2007)
    [2] T. Jiang, S. Qiao, Z. Shi, L. Peng, J. Huangfu, W. Z. Cui, W. Ma, L. Ran, "Simulation and experimental evalution of the radar signal performance of chaotic signals generated from a microwave Colpitts oscillator," Progress In Electromagnetics Research,PIER 90, 15-30 (2009)
    [3] F. Y. Lin, J. M. Liu, "Chaotic radar using nonlinear laser dynamics,"
    IEEE Journal of Quantum Electronics, vol. 40, no. 6, 815-820, June (2004)
    [4] 呂敏杰, "Lorenz混沌電路之間斷同步研究," 國立中山大學物理研究所碩士論文(2001)
    [5] David M. Pozar, "Microwave engineering," John Wiley & Sons, Inc. (2005)
    [6] Sun Wei, Su Donglin, "Microwave chaotic Colpitts circuit design," Antennas, Propagation and EM Theory, ISAPE. 8th International Symposium, 1127-1130 (2008)
    [7] Z. G. Shi, L. X. Ran, K. S. Cheng, "基於預設定頻率分布的Colpitts混沌電路設計,"
    浙江大學學報第39卷第3期, 402-406 (2005)
    [8] A. Baziliauskas, A. Tamasevicius, S. Bumelien, E. Lindberg, "Synchronization of chaotic Colpitts oscillators" Proc. of the 42nd. conf. of Riga Technical University,55-58 (2001)
    [9] Z. G. Shi, L. X. Ran, "Microwave chaotic Colpitts oscillator: design, implementation
    and application," J. of Electromagn.Waves and Appl, vol. 20, no. 10, 1335-1349 (2006)
    [10] Michael Peter Kennedy, "Chaos in the Colpitts oscillator," IEEE Transactions on Circuits and Systems-Ι: Fundamental Theory and Applications, vol. 41, no. 11,771-774, November (1994)
    [11] G. M. Maggio, O. D. Feo, M. P. Kennedy,, "Nonlinear analysis of the Colpitts oscillator and applications to design", IEEE Transactions on Circuits and Systems-Ι: Fundamental Theory and Applications, vol. 46, no. 9, 1118-1130, September (1999)
    [12] F. Y. Lin, "UWB wideband chaotic radar and lidar using nonlinear laser dynamics,"
    美國加州大學洛杉磯分校(UCLA)博士論文(2004)
    [13] X.Wu, W. Liu, L. Zhao, J. S. Fu, "Chaotic phase code for radar pulse compression,"
    Proc. of IEEE Radar Conference. 279-283 (2001)
    [14] H. F. Chen, J. M. Liu, T. B. Simpson, "Response characteristics of direct current modulation on a bandwidth-enhanced semiconductor laser under strong injection locking," Optics Communications Volume 173, Issues 1-6, 349-355, January (2000)
    [15] Y. W. Chen, "頻寬限制對於脈衝頻率在於光電回授雷射影響之研究", 國立清華大學光電研究所碩士論文(2009)
    [16] F. Y. Lin, J. M. Liu, "Nonlinear dynamical characteristics of an optically injected
    semiconductor laser subject to optoelectronic feedback", Optics Communications Volume 221, Issues 1-3, 173-180, June (2003)
    [17] Henry D. I. Abarbanel, Matthew B. Kennel, Lucas Illing, S. Tang, H. F. Chen,J. M. Liu, "Synchronization and communication using semiconductor lasers with optoelectronic feedback", IEEE Journal of Quantum Electronics, vol. 37, no. 10,1301-1311, October (2001)
    [18] S. Tang, J. M. Liu, \Chaotic pulsing and quasi-periodic route to chaos in a semiconductor
    laser with delayed opto-electronic feedback," IEEE Journal of Quantum Electronics. vol. 37, no. 3, 329-336, March (2001)
    [19] F. Y. Lin, J. M. Liu, \Nonlinear dynamics of a semiconductor laser with delayed
    negative optoelectronic feedback," IEEE Journal of Quantum Electronics. vol. 39,no. 4, 562-568, April (2003)
    [20] A. Tamasevicius, G. Mykolaitis, \Chaotic Colpitts oscillator for the ultrahigh frequency range," Nonlinear Dynamics Volume 44, Issue 1-4, 159-165, June (2006)
    [21] G. Mykolaitis, A. Tamasevicius, \Experimental demonstration of chaos from Colpitts oscillator in VHF and UHF ranges," Electronics Letters Volume 40, Issue 2,91-92, January (2004)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE