研究生: |
王景弘 Wang, Jing-Hung |
---|---|
論文名稱: |
金薄膜及金奈米多孔性薄膜之表面電漿子特性研究 Study of Plasmonic Properties of Gold Films and Nanoporous Gold Films |
指導教授: |
林鶴南
Lin, Heh-Nan |
口試委員: |
李紫原
許鉦宗 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 表面電漿共振 、金薄膜 、金奈米多孔性薄膜 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於表面電漿效應可應用於光波導元件、生物感測器、
表面增強拉曼散射、及新穎光電元件等用途,吸引了大量的學者投入
開發,由於金擁有顯著的表面電漿光學特性、良好的穩定性、化學惰
性、與重複使用性,因此受到了廣大的重視。
雖然對於金奈米結構其表面電漿特性研究的論文已經如此之多,
但對金薄膜及金奈米多孔性薄膜之表面電漿共振特性進行探討的論
文,卻反而較為少見,因此本論文對此兩種金薄膜結構之電漿共振特
性進行探討。
對於厚度介在 1 至30 nm 金薄膜,於散射光譜中可以觀察到金薄
膜之區域表面電漿共振波峰值隨著厚度上升而增加,且峰值強度在厚
度為10 nm 時最強,其原因是由於晶粒大小以及表面形貌所造成。
以黃光製程,製備具大小為100×100 □m2 ,厚度為10 至60 nm 之
金薄膜圖案,利用散射光譜發現邊界電漿共振擁有三種共振模態
Mode 1、Mode 2、與Mode 3,其共振波峰分別位於515、585、及640
nm,推測其形成原因是由於鍍膜時光阻遮蔽效應所造成的邊界不平
整,且由於膜厚增加導致遮蔽效應減低,造成Mode 1 與Mode 2 共
振波峰產生紅位移,而Mode 3 呈現藍位移的現象,並利用PMMA 進
行靈敏度測試,發覺三組共振模態皆產生明顯之紅位移現象,其靈敏
度最高可達122 nm R.I.U.-1。
利用銅金共鍍及去合金製程,製備了厚度在 10 至60 nm 的金奈
米多孔性薄膜。發現由於孔洞電漿共振效應,散射光譜之共振波峰會
隨著孔洞變大而有紅位移的現象,且孔洞密度上升會使得共振波峰有
藍位移的行為,並利用PMMA 與十八烷硫醇分子進行靈敏度測試,
發覺其紅位移現象並不明顯,其靈敏度最高為20 nm R.I.U.-1。
In recent years, surface plasmon effects have attracted increasing interests in the development of optical waveguides, biosensors, surface enhanced Raman scattering, and novel photonic devices. Because of its advantages of strong surface plasmon effect, excellent stability, chemical inactivity, and reusability, Au has been extensively used in many applications related to surface plasmon effects. Although there are lots of studies on the surface plasmon effects of Au nanostructures, there are far less works on plain Au films and nanoporous Au films. Therefore, this thesis aims to study the surface plasmon properties of these two types of Au films. For Au films with thicknesses ranging between 1 and 30 nm, a surface resonance peak can be found in the scattering spectrum of a film. The peak wavelength increases when the film thickness increases and the resonance intensity is strongest at the thickness of 10 nm. From SEM and AFM images, this result can be related to the grain size and surface morphology of the films. With the aid of photolithography, Au film patterns with a size of 100×100 □m2 and thicknesses of 10 to 60 nm are prepared. Interesting surface plasmon resonance modes are found at film edges, which will be called edge plasmon resonance modes. Three peaks appear at around 515, 585, and 640 nm in wavelength in a scattering spectrum. The first two peaks increase and the last peak decrease when the film thickness increases. These three modes are argued to result from the non-ideal boundaries due to the shadow effect in metal deposition. Using PMMA for sensitivity test, we can find red-shifts in all these three modes, and the highest value of sensitivity is 122 nm R.I.U.□1. Nanoporous Au films with thicknesses of 10 to 60 nm are prepared by co-deposition of Cu and Au and sequentially and de-alloying. A hole plasmon resonance mode is found in the scattering spectrum of a film. Furthermore, we can find a red-shift when the pore size is increased and a blue-shift when the pore density is raised. Using PMMA and ODT (1-octadecanethiol) for sensitivity test, the changes in peak wavelengths in the scattering spectra are not obvious, and the highest sensitivity is only 20 nm R.I.U. □1.
1. Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K..; Rogers, J. A.;
Nuzzo, R. G. Chem. Rev. 2008, 108, 494-521.
2. Hutter, E.; Fendler, J. H. Adv. Mater. 2004, 16, 1685−1706.
3. Pitarke, J. M.; Silkin, V. M.; Chulkov, E. V.; Echenique, P. M. Rep. Prog. Phys. 2007, 70,
1−87.
4. Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Nature 2003, 424, 824−830.
5. Bendikov, T. A.; Rabinkov, A.; Karakouz, T.; Vaskevich, A.; Rubinstein, I. Anal. Chem. 2008,
80, 7487-7498.
6. Homola, J.; Chem. Rev. 2008, 108, 462-493.
7. Luo, W.; van der Veer, W.; Chu, P.; Mills, D. L.; Penner, R. M.; Hemminger, J. C. J. Phys.
Chem. C 2008, 112, 11609−11613.
8. Yan, B.; Thubagere, A.; Premasiri, W. R.; Ziegler, L. D.; Dal Negro, L.; Reinhard, B. M. ACS
Nano 2009, 3, 1190−1202.
9. Ko, H.; Singamaneni, S.; Tsukruk, V. V. Small 2008, 4, 1576−1599.
10. Yonzon, C. R.; Stuart, D. A.; Zhang, X. Y.; McFarland, A. D.; Haynes, C. L.; Van Duyne, R. P.
Talanta 2005, 67, 438−448.
11. Lang, X. Y.; Guan, P. F.; Zhang, L.; Fujita, T.; Chen, M. W. Appl. Phys. Lett. 2010, 96,
073701.
12. Jensen, T. R.; Duval, M. L.; Kelly, K. L.; Lazarides, A. A.; Schatz, G. C.; Van Duyne, R. P. J.
Phys. Chem. B 1999, 103, 9846−9853.
13. Tam, F.; Moran, C.; Halas, N., J. Phys. Chem. B 2004, 108, 17290−17294.
14. Miller, M. M.; Lazarides, A. A. J. Phys. Chem. B 2005, 109, 21556−21565.
15. Lockyear, M. J.; Hibbins, A. P.; Sambles, J. R.; Lawrence, C. R. J. Opt. A-Pure Appl. Opt.
2005, 7, S152−S158.
16. Dragnea, B.; Szarko, J. M.; Kowarik, S.; Weimann, T.; Feldmann, J.; Leone, S. R. Nano Lett.
47
2003, 3, 3−7.
17. Kucheyev, S. O.; Hayes, J. R.; Biener, J.; Huser, T.; Talley, C. E.; Hamza, A. V. Appl. Phys.
Lett. 2006, 89, 053102.
18. Qian, L. H.; Yan, X. Q.; Fujita, T.; Inoue, A.; Chen, M. W. Appl. Phys. Lett. 2007, 90, 153120.
19. Jurczakowski, R.; Hitz, C.; Lasia, A. J. Electroanal. Chem. 2004, 572, 355−366.
20. Zayats, A. V.; Smolyaninov, II J. Opt. A-Pure Appl. Opt. 2003, 5, S16−S50.
21. Huang, H. J.; Yu, C. P.; Chang, H. C.; Chiu, K. P.; Chen, H. M.; Liu, R. S.; Tsai, D. P. Opt.
Express 2007, 15, 7132−7139.
22. Prikulis, J.; Hanarp, P.; Olofsson, L.; Sutherland, D.; Kall, M. Nano Lett. 2004, 4, 1003−1007.
23. Yin, L.; Vlasko-Vlasov, V. K.; Rydh, A.; Pearson, J.; Welp, U.; Chang, S. H.; Gray, S. K.;
Schatz, G. C.; Brown, D. B.; Kimball, C. W. Appl. Phys. Lett. 2004, 85, 467−469.
24. Chang, S. H.; Gray, S. K.; Schatz, G. C. Optics Express 2005, 13, 3150−3165.
25. Park, T. H.; Mirin, N.; Lassiter, J. B.; Nehl, C. L.; Halas, N. J.; Nordlander, P. ACS Nano 2008,
2, 25−32.
26. Degiron, A.; Ebbesen, T. W. J. Opt. A-Pure Appl. Opt. 2005, 7, S90−S96.
27. Rindzevicius, T.; Alaverdyan, Y.; Dahlin, A.; Hook, F.; Sutherland, D.; Kall, M. Nano Lett.
2005, 11, 2335−2339.
28. Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; Kall, M.; Bryant, G. W.; de Abajo, F. J. G. Phys.
Rev. Lett. 2003, 90, 057401.
29. Zhang, X. Y.; Hicks, E. M.; Zhao, J.; Schatz, G. C.; Van Duyne, R. P. Nano Lett. 2005, 5,
1503−1507.
30. Doron-Mor, I.; Barkay, Z.; Filip-Granit, N.; Vaskevich, A.; Rubinstein, I. Chem. Mater. 2004,
16, 3476-3483.
31. Yu, F.; Ahl, S.; Caminade, A. M.; Majoral, J. P.; Knoll, W.; Erlebacher, J. Anal. Chem. 2006,
78, 7346-7350.
32. Teperik, T. V.; Popov, V. V.; García de Abajo, F. J. Phys. Rev. B 2005, 71, 085408.
48
33. Lin, H.-Y.; Huang, C.-H.; Chang, C.-H.; Lan, Y.-C.; Chui, H.-C. Opt. Express. 2010, 18,
165−172.
34. Lereu, A. L.; Sanchez-Mosteiro, G.; Ghenuche, P.; Quidant, R.; van Hulst, N. F. J.
Microsc.-Oxf. 2008, 229, 254−258.
35. Kang, T.; Yoon, I.; Jeon, K. S.; Choi, W.; Lee, Y.; Seo, K.; Yoo, Y.; Park, Q.-H.; Ihee, H.; Suh,
Y. D.; Kim, B. J. Phys. Chem. C 2009, 113, 7492−7496.
36. Lee, H. J.; Goodrich, T. T.; Corn, R. M. Anal. Chem. 2001, 73, 5525−5531.
37. Hall, D. Anal. Biochem. 2001, 288, 109−125.
38. Thevenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S. Biosens. Bioelectron. 2001, 16,
121−131.
39. Horacek, J.; Skladal, P. Anal. Chim. Acta 1997, 347, 43−50.
40. Kasemo, B. Curr. Opin. Solid State Mat. Sci. 1998, 3, 451−459.
41. Yu, C. X.; Ganjoo, A.; Jain, H.; Pantano, C. G.; Irudayaraj, J. Anal. Chem. 2006, 78,
2500−2506.
42. Polla, D. L.; Erdman, A. G.; Robbins, W. P.; Markus, D. T.; Diaz-Diaz, J.; Rizq, R.; Nam, Y.;
Brickner, H. T.; Wang, A.; Krulevitch, P., Annu. Rev. Biomed. Eng. 2000, 2, 551−576.
43. Fleischm, M.; Hendra, P. J.; McQuilla, A. J. Chem. Phys. Lett. 1974, 26, 163−166.
44. Nie, S. M.; Emery, S. R. Science 1997, 275, 1102−1106.
45. Dieringer, J. A.; Lettan, R. B.; Scheidt, K. A.; Van Duyne, R. P. J. Am. Chem. Soc. 2007, 129,
16249−16256.
46. Kucheyev, S. O.; Hayes, J. R.; Biener, J.; Huser, T.; Talley, C. E.; Hamza, A. V. Appl. Phys.
Lett. 2006, 89, 053102.
47. Qian, L. H.; Yan, X. Q.; Fujita, T.; Inoue, A.; Chen, M. W. Appl. Phys. Lett. 2007, 90, 153120.