簡易檢索 / 詳目顯示

研究生: 陳威霖
Chen, Wei-Ling
論文名稱: 利用量子干涉研究原子中的基本對稱性破壞
Study the fundamental symmetry violation in atoms with quantum interference
指導教授: 劉怡維
Liu, Yi-Wei
口試委員: 鄭王曜
Cheng, Wang-Yau
王立邦
Wang, Li-Bang
褚志崧
Chuu, Chih-Sung
蔡錦俊
Tsai, Chin-Chun
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 174
中文關鍵詞: 宇稱不守恆量子干涉電磁感應透明禁制躍遷暗狀態
外文關鍵詞: parity nonconservation, quantum interference, electromagnetically induced transparency, forbidden transition, dark state, thallium
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文主要是以電磁感應透明(electromagnetically induced transparency)的
    方式量測出與宇稱不守恆相關的參數(χ),以及利用原子束的特性,觀測亞都普
    勒光譜中的粒子數相干布居數囚禁(coherent population trapping)效應以及粒子
    數的分布。在鉈的熱原子腔體中,首先利用光纖耦合的相位調製器產生一高一
    低的頻率帶,使得我們可以在短時間內測量1283奈米中相距21千兆赫茲的兩道
    躍遷的信號,大幅縮小環境以及系統因素所產生的不確定性,再利用535奈米躍
    遷中顯著的同位素位移來區別鉈-205和其同位素鉈-203的效應,這使我們能夠直
    接量測出鉈-205和鉈-203分別的χ值,實驗結果也達到了1%的精準度,並與其中
    一組理論值相符,為長久以來的宇稱不守恆量測提供一項支持。
    原子束的架設則作為下一步來量測鉈的量子干涉效應,由於鉈原子的熔點
    高且蒸氣壓偏低,使得原子束必須在高溫下才能產生至可觀測的量。在本論文
    中,我們利用許多不銹鋼的毛細管作為噴嘴,來實現高濃度低發散角的原子
    束。並利用自製的環形共振腔體將鈦藍寶石雷射的頻率從755奈米提升至377.5奈
    米,以符合鉈原子的躍遷頻率。在原子束中,我們利用兩組光電倍增管來觀測
    鉈的螢光,並藉由原子束所具有的時序關係推論出鉈原子在量子干涉下的螢光
    光譜以及粒子數在能階上的分布情形,最後清楚解析出反應過程中完整的動態
    變化。


    Abstract
    This paper mainly measures the parity non-conservation (PNC) related pa-
    rameter, χ, with the method of electromagnetically induced transparency (EIT),
    and uses the characteristics of thallium atomic beams to observe the coherent
    population trapping (CPT) and population distribution under the sub-Doppler
    spectroscopy. In the thermal atomic cavity of thallium, a fiber-coupled phase
    modulator is used to generate a high frequency sideband and a low frequency
    sideband, so we can measure the signals of two 1283 nm transitions with 21 GHz
    frequency gap in a short time, substantially reducing the uncertainties arising from
    environmental and systemic factors. Besides, using the property of significant iso-
    topic shift in the 535 nm transition, we can distinguish the effects of thallium-205
    and its isotope thallium-203. This advantage allows us to directly measure the
    χ values of thallium-205 and thallium-203, respectively. The experimental result
    has also reached an accuracy of 1%, and the χ value is consistent with one of the
    theoretical calculations. We provide a support for the long dispute on the atomic
    thallium PNC measurements.
    The setup of the atomic beam is the next step to measure the quantum inter-
    ference effect of thallium. Due to the high melting point and low vapor pressure
    of thallium atoms, the thallium vapor must be generated at a relatively high tem-
    perature to produce an observable atomic beam. In this paper, we use many
    stainless steel capillaries as nozzles to achieve high concentration and low diver-
    gence angle of the atomic beam. Additionally, the frequency of the Ti:sapphire
    laser is increased from 755 nm to 377.5 nm by using a homemade ring resonant
    cavity to match the thallium transition. In the atomic beam, we use two sets
    of photomultipliers (PMT) to observe the fluorescence of thallium, and deduce
    the fluorescence spectrum under the quantum interference. We can also infer the
    population distribution after the quantum interference by the time sequence re-
    lationship of the atomic beam. Finally, the completely dynamic variation in the
    interaction is clearly analyzed.

    Contents Abstract (Chinese) I Acknowledgements (Chinese) II Abstract III Contents V List of Figures X List of Tables XV 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Atomic Parity Non-Conservation . . . . . . . . . . . . . . . . . . . 2 1.2.1 NSI part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 NSD part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Successful Atomic PNC methods . . . . . . . . . . . . . . . . . . . 5 1.4 Discrepancy between The Two Groups in Tl PNC Measurements . 6 1.5 Improvement of the PNC Optical Rotation Experiment . . . . . . . 8 2 Facts about Thallium 12 2.1 Three major transitions and energy states for the experiments . . . 12 2.2 Thallium isotopic characteristic . . . . . . . . . . . . . . . . . . . . 14 2.3 Hyperfine structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Doppler width and spectrum estimation . . . . . . . . . . . . . . . 16 2.5 population and vapor pressure . . . . . . . . . . . . . . . . . . . . . 16 3 Experiment Apparatus 19 3.1 Laser structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 377 nm laser . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2 535 nm laser . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.3 1283 nm laser . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Laser and Cavity stabilization . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 Laser stabilization . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.2 Cavity stabilization . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 Cell vapour system . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 PPLN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 Second Harmonic Generation UV Light at 377 nm 41 4.1 Ti:sapphire laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Non-linear crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3 Phase matching conditions . . . . . . . . . . . . . . . . . . . . . . . 46 4.3.1 Coherence length . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3.2 Birefringent optical crystal . . . . . . . . . . . . . . . . . . . 47 4.3.3 Critical phase matching . . . . . . . . . . . . . . . . . . . . 49 4.3.4 Effective non-linear coefficient . . . . . . . . . . . . . . . . . 51 4.4 Anti-reflective coating and Brewster’s angle . . . . . . . . . . . . . 52 4.4.1 Anti-reflective coating . . . . . . . . . . . . . . . . . . . . . 53 4.4.2 Brewster’s angle . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.5 Walk-off angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.6 Ring cavity design for doubling the laser frequency . . . . . . . . . 60 4.6.1 Cavity configurations . . . . . . . . . . . . . . . . . . . . . . 60 4.6.2 Beam waist for the tangential and sagittal plane . . . . . . . 63 4.7 Resonant enhancement . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.7.1 Impedance matching . . . . . . . . . . . . . . . . . . . . . . 66 4.8 TEM00 coupling method . . . . . . . . . . . . . . . . . . . . . . . . 68 5 High-Sensitivity Sideband Amplitude Modulation Spectroscopy 70 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2 Sideband Amplitude Modulation . . . . . . . . . . . . . . . . . . . 72 5.3 Experiment Setup for Measuring CH4 Absorption . . . . . . . . . . 75 5.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6 Transitions with Single Photon Absorption 83 6.1 Single photon direct absorption spectroscopy . . . . . . . . . . . . . 83 6.1.1 Beer–Lambert Law . . . . . . . . . . . . . . . . . . . . . . . 83 6.1.2 Natural linewidth . . . . . . . . . . . . . . . . . . . . . . . . 84 6.1.3 Lorentzian profile . . . . . . . . . . . . . . . . . . . . . . . . 86 6.1.4 Gaussian profile . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.1.5 Comparison between Lorentzian and Gaussian line profiles . 89 6.1.6 Voigt profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.2 Single photon absorption for thallium . . . . . . . . . . . . . . . . . 90 6.2.1 1283 nm E1-forbidden transition . . . . . . . . . . . . . . . 91 6.2.2 535 nm E1-allowed transition . . . . . . . . . . . . . . . . . 91 6.2.3 377 nm E1-allowed transition . . . . . . . . . . . . . . . . . 94 7 Electric Quadrupole Amplitude Experiment with Electromagnet- ically Induced Transparency 96 7.1 Electromagnetically Induced Transparency . . . . . . . . . . . . . . 97 7.1.1 EIT compared to direct absorption . . . . . . . . . . . . . . 98 7.1.2 Typical three-level EIT model . . . . . . . . . . . . . . . . . 99 7.1.3 EIT in thallium forbidden transition . . . . . . . . . . . . . 103 7.1.4 Fiber-EOM Frequency Bridging . . . . . . . . . . . . . . . . 105 7.2 Experiment for measuring the χ value . . . . . . . . . . . . . . . . . 107 7.3 EIT spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.4 Systematic effects and error budget . . . . . . . . . . . . . . . . . . 114 7.4.1 Light power effect . . . . . . . . . . . . . . . . . . . . . . . . 114 7.4.2 Number density . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.4.3 Error budget . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.5 Result and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.5.1 χ value for 205Tl and 203Tl . . . . . . . . . . . . . . . . . . . 120 7.5.2 Connection between χ and thallium PNC . . . . . . . . . . . 121 8 Thallium Atomic Beam 123 8.1 Atomic Beam Structure . . . . . . . . . . . . . . . . . . . . . . . . 123 8.2 Heater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.3 Observation from the photomultiplier . . . . . . . . . . . . . . . . . 128 9 Coherent Population Trapping Observation by the Thallium Atomic Beam 132 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 9.1.1 Baryon asymmetry . . . . . . . . . . . . . . . . . . . . . . . 132 9.1.2 Charge conjugation, Parity, and Time reversal symmetry . . 133 9.1.3 Electric dipole moments . . . . . . . . . . . . . . . . . . . . 133 9.1.4 CPT model . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 9.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.2.1 Atomic beam structure . . . . . . . . . . . . . . . . . . . . . 137 9.2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 9.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 9.3.1 Time-averaged measurement: CPT spectroscopy . . . . . . . 141 9.3.2 Transient measurement: CPT dynamics . . . . . . . . . . . 142 9.3.3 Frequency-dependent dynamics . . . . . . . . . . . . . . . . 149 9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Bibliography 153

    Bibliography
    [1] Sheldon L Glashow. Partial-symmetries of weak interactions. Nuclear
    physics, 22(4):579–588, 1961.
    [2] Steven Weinberg. Implications of dynamical symmetry breaking: an adden-
    dum. Physical Review D, 19(4):1277, 1979.
    [3] Abdus Salam. Elementary particle theory. In Prog. Of the Nobel Symposium,
    1968, Stockholm, Sweden, volume 367, 1968.
    [4] SJ Barish, Y Cho, M Derrick, LG Hyman, J Rest, P Schreiner, R Singer,
    RP Smith, H Yuta, D Koetke, et al. Observation of single-pion production
    by a weak neutral current. Physical Review Letters, 33(7):448, 1974.
    [5] J Blietschau, H Deden, H Faissner, FJ Hasert, W Krenz, D Lanske, J Morfin,
    M Pohl, K Schultze, H Weerts, et al. Evidence for the leptonic neutral current
    reaction νμ+ e-→ νμ+ e-. Nuclear Physics B, 114(2):189–198, 1976.
    [6] Albert Nomdo Diddens, M Jonker, J Panman, F Udo, JV Allaby, U Amaldi,
    G Barbiellini, A Baroncelli, V Blobel, G Cocconi, et al. A detector for
    neutral-current interactions of high-energy neutrinod. Nuclear Instruments
    and Methods, 178(1):27–48, 1980.
    [7] MA Bouchiat and CC Bouchiat. Weak neutral currents in atomic physics.
    Physics Letters B, 48(2):111–114, 1974.
    [8] MA Bouchiat and CC Bouchiat. I. parity violation induced by weak neutral
    currents in atomic physics. Journal de Physique, 35(12):899–927, 1974.
    [9] PGH Sandars. Atomic physics vol 4 ed g zu putlitz, ew weber and a win-
    nacker. Plenum, New York) p, 71:225, 1975.
    [10] DC Soreide, DE Roberts, EG Lindahl, LL Lewis, GR Apperson, and
    EN Fortson. Search for parity nonconservation in atomic bismuth. Phys-
    ical Review Letters, 36(7):352, 1976.
    [11] LM Barkov and MS Zolotorev. Parity violation in atomic bismuth. Physics
    Letters B, 85(2-3):308–313, 1979.
    [12] S Chu, ED Commins, and R Conti. Observation of the 6 2p12- 7 2p12 m1
    transition in atomic thallium vapor. Physics Letters A, 60(2):96–100, 1977.
    [13] Iosif Bentsionovich Khriplovich. Parity nonconservation in atomic phenom-
    ena. 1991.
    [14] VV Flambaum and DW Murray. Anapole moment and nucleon weak inter-
    actions. Physical Review C, 56(3):1641, 1997.
    [15] JSM Ginges and Victor V Flambaum. Violations of fundamental symmetries
    in atoms and tests of unification theories of elementary particles. Physics
    Reports, 397(2):63–154, 2004.
    [16] Kenji Abe, Koya Abe, T Abe, I Adam, H Akimoto, D Aston, KG Baird,
    C Baltay, HR Band, TL Barklow, et al. High-precision measurement of
    the left-right z boson cross-section asymmetry. Physical Review Letters,
    84(26):5945, 2000.
    [17] ALEPH collaboration, CDF collaboration, D0 Collaboration, DELPHI col-
    laboration, L3 Collaboration, OPAL collaboration, SLD collaboration, LEP
    Electroweak Working Group, Tevatron Electroweak Working Group, et al.
    Precision electroweak measurements and constraints on the standard model.
    arXiv preprint arXiv:0811.4682, 2008.
    [18] VV Flambaum and IB Khriplovich. P-odd nuclear forces: a source of parity
    violation in atoms. Sov. Phys.-JETP (Engl. Transl.);(United States), 52(5),
    1980.
    [19] VV Flambaum, IB Khriplovich, and OP Sushkov. Nuclear anapole moments.
    Physics Letters B, 146(6):367–369, 1984.
    [20] VV Flambaum and IB Khriplovich. On the enhancement of parity noncon-
    serving effects in diatomic molecules. Physics Letters A, 110(3):121–125,
    1985.
    [21] VV Flambaum and IB Khriplovich. New bounds on the electric dipole mo-
    ment of the electron and on t-odd electron-nucleon coupling. Zh. Eksp.
    Theor. Fiz, 89:1505, 1985.
    [22] CS Wood, SC Bennett, Donghyun Cho, BP Masterson, JL Roberts, CE Tan-
    ner, and Carl E Wieman. Measurement of parity nonconservation and an
    anapole moment in cesium. Science, 275(5307):1759–1763, 1997.
    [23] VA Dzuba, VV Flambaum, and JSM Ginges. High-precision calculation of
    parity nonconservation in cesium and test of the standard model. Physical
    Review D, 66(7):076013, 2002.
    [24] VA Dzuba and VV Flambaum. Calculation of nuclear-spin-dependent parity
    nonconservation in s–d transitions of ba+, yb+, and ra+ ions. Physical
    Review A, 83(5):052513, 2011.
    [25] BK Sahoo, P Mandal, and M Mukherjee. Parity nonconservation in odd
    isotopes of single trapped atomic ions. Physical Review A, 83(3):030502,
    2011.
    [26] BK Sahoo and BP Das. Parity nonconservation in ytterbium ion. Physical
    Review A, 84(1):010502, 2011.
    [27] NH Edwards, SJ Phipp, PEG Baird, and S Nakayama. Precise measurement
    of parity nonconserving optical rotation in atomic thallium. Physical review
    letters, 74(14):2654, 1995.
    [28] PA Vetter, DM Meekhof, PK Majumder, SK Lamoreaux, and EN Fortson.
    Precise test of electroweak theory from a new measurement of parity non-
    conservation in atomic thallium. Physical review letters, 74(14):2658, 1995.
    [29] VA Dzuba, VV Flambaum, PG Silvestrov, and OP Sushkov. Calculation
    of parity non-conservation in thallium. Journal of Physics B: Atomic and
    Molecular Physics (1968-1987), 20(14):3297, 1987.
    [30] WC Haxton and Carl E Wieman. Atomic parity nonconservation and nu-
    clear anapole moments. Annual Review of Nuclear and Particle Science,
    51(1):261–293, 2001.
    [31] P. K. Majumder and L. L. Tsai. Measurement of the electric quadrupole
    amplitude within the 1283-nm 6 p 1/2- 6 p 3/2 transition in atomic thallium.
    Physical Review A, 60(1):267, 1999.
    [32] UI Safronova, MS Safronova, and WR Johnson. Excitation energies, hyper-
    fine constants, e 1, e 2, and m 1 transition rates, and lifetimes of 6 s 2 n l
    states in tl i and pb ii. Physical Review A, 71(5):052506, 2005.
    [33] SG Porsev, MS Safronova, and MG Kozlov. Electric dipole moment enhance-
    ment factor of thallium. Physical Review Letters, 108(17):173001, 2012.
    [34] Yong-Bo Tang, Ning-Ning Gao, Bing-Qiong Lou, and Ting-Yun Shi. Rela-
    tivistic coupled-cluster calculations of the polarizabilities of atomic thallium.
    Physical Review A, 98(6):062511, 2018.
    [35] Ann-Marie M ̊artensson-Pendrill. Magnetic moment distributions in tl nuclei.
    Physical review letters, 74(12):2184, 1995.
    [36] RH Garstang. Transition probabilities of forbidden lines. Journal of Research
    of the National Bureau of Standards. Section A, Physics and Chemistry,
    68(1):61, 1964.
    [37] BRIAN Warner. Transition probabilities in np and n p5configurations.
    Zeitschrift fur Astrophysik, 69:399, 1968.
    [38] David V Neuffer and Eugene D Commins. Calculation of parity-
    nonconserving effects in the 6 p 1 2 2- 7 p 1 2 2 forbidden m 1 transition in
    thallium. Physical Review A, 16(3):844, 1977.
    [39] Emile Bi ́emont and Pascal Quinet. Forbidden lines in 6pk (k= 1–5) config-
    urations. Physica Scripta, 54(1):36, 1996.
    [40] TD Wolfenden, PEG Baird, and PGH Sandars. Observation of parity-
    violating optical rotation in atomic thallium. EPL (Europhysics Letters),
    15(7):731, 1991.
    [41] MJD Macpherson, KP Zetie, RB Warrington, DN Stacey, and JP Hoare.
    Precise measurement of parity nonconserving optical rotation at 876 nm in
    atomic bismuth. Physical review letters, 67(20):2784, 1991.
    [42] Dawn M Meekhof, P Vetter, PK Majumder, SK Lamoreaux, and EN Fort-
    son. High-precision measurement of parity nonconserving optical rotation in
    atomic lead. Physical review letters, 71(21):3442, 1993.
    [43] A. D. Cronin. New techniques for measuring atomic parity violation. Uni-
    versity of Washington, 1999.
    [44] AD Cronin, RB Warrington, SK Lamoreaux, and EN Fortson. Studies
    of electromagnetically induced transparency in thallium vapor and possible
    utility for measuring atomic parity nonconservation. Physical review letters,
    80(17):3719, 1998.
    [45] VA Dzuba, VV Flambaum, and IB Khriplovich. Enhancement ofp-andt-
    nonconserving effects in rare-earth atoms. Zeitschrift f ̈ur Physik D Atoms,
    Molecules and Clusters, 1(3):243–245, 1986.
    [46] SJ Pollock, E Norval Fortson, and L Wilets. Atomic parity nonconserva-
    tion: Electroweak parameters and nuclear structure. Physical Review C,
    46(6):2587, 1992.
    [47] MS Safronova, D Budker, D DeMille, Derek F Jackson Kimball, A Dere-
    vianko, and Charles W Clark. Search for new physics with atoms and
    molecules. Reviews of Modern Physics, 90(2):025008, 2018.
    [48] Dionysis Antypas, A Fabricant, Jason Evan Stalnaker, Konstantin Tsigutkin,
    VV Flambaum, and Dmitry Budker. Isotopic variation of parity violation in
    atomic ytterbium. Nature Physics, 15(2):120–123, 2019.
    [49] EN Fortson, Y Pang, and L Wilets. Nuclear-structure effects in atomic parity
    nonconservation. Physical review letters, 65(23):2857, 1990.
    [50] B Alex Brown, A Derevianko, and VV Flambaum. Calculations of the
    neutron skin and its effect in atomic parity violation. Physical Review C,
    79(3):035501, 2009.
    [51] Jean E Sansonetti and William Clyde Martin. Handbook of basic atomic
    spectroscopic data. Journal of physical and chemical reference data,
    34(4):1559–2259, 2005.
    [52] Robert D Cowan. The theory of atomic structure and spectra. Number 3.
    Univ of California Press, 1981.
    [53] William M Haynes, David R Lide, and Thomas J Bruno. CRC handbook of
    chemistry and physics. CRC press, 2016.
    [54] Tzu-Ling Chen and Yi-Wei Liu. Noise-immune cavity-enhanced optical het-
    erodyne molecular spectrometry on n 2 o 1.283 μm transition based on a
    quantum-dot external-cavity diode laser. Optics Letters, 40(18):4352–4355,
    2015.
    [55] DL Huffaker, G Park, Z1 Zou, OB Shchekin, and DG Deppe. 1.3 μm
    room-temperature gaas-based quantum-dot laser. Applied physics letters,
    73(18):2564–2566, 1998.
    [56] DL Huffaker and DG Deppe. Electroluminescence efficiency of 1.3 μm wave-
    length ingaas/gaas quantum dots. Applied physics letters, 73(4):520–522,
    1998.
    [57] Mashiro Asada, Yasuyuki Miyamoto, and Yasuharu Suematsu. Gain and
    the threshold of three-dimensional quantum-box lasers. IEEE Journal of
    quantum electronics, 22(9):1915–1921, 1986.
    [58] Yasuhiko Arakawa, Takahiro Nakamura, and Jinkwan Kwoen. Quantum dot
    lasers for silicon photonics. In Semiconductors and Semimetals, volume 101,
    pages 91–138. Elsevier, 2019.
    [59] TW Hansch and B Couillaud. Laser frequency stabilization by polariza-
    tion spectroscopy of a reflecting reference cavity. Optics communications,
    35(3):441–444, 1980.
    [60] Paul D Kunz, Thomas P Heavner, and Steven R Jefferts. Polarization-
    enhanced absorption spectroscopy for laser stabilization. Applied Optics,
    52(33):8048–8053, 2013.
    [61] Marin Pichler and David C Hall. Simple laser frequency locking based
    on doppler-free magnetically induced dichroism. Optics Communications,
    285(1):50–53, 2012.
    [62] Valdis Bl ̄ums, Jordan Scarabel, Kenji Shimizu, Moji Ghadimi, Steven C Con-
    nell, Sylvi H ̈andel, Benjamin G Norton, Elizabeth M Bridge, David Kielpin-
    ski, Mirko Lobino, et al. Laser stabilization to neutral yb in a discharge
    with polarization-enhanced frequency modulation spectroscopy. Review of
    Scientific Instruments, 91(12):123002, 2020.
    [63] A Flusberg, T Mossberg, and SR Hartmann. Optical difference-frequency
    generation in atomic thallium vapor. Physical Review Letters, 38(2):59, 1977.
    [64] PA Franken, Alan E Hill, CW el Peters, and Gabriel Weinreich. Generation
    of optical harmonics. Physical Review Letters, 7(4):118, 1961.
    [65] R. Withnall. Raman spectroscopy. In Bob D. Guenther and Duncan G.
    Steel, editors, Encyclopedia of Modern Optics (Second Edition), pages 354–
    368. Elsevier, Oxford, second edition edition, 2005.
    [66] Arlee V Smith. Crystal nonlinear optics: with SNLO examples. AS-Photonics
    Albuquerque, NM, USA, 2018.
    [67] Valentin G Dmitriev, Gagik G Gurzadyan, and David N Nikogosyan. Hand-
    book of nonlinear optical crystals, volume 64. Springer, 2013.
    [68] Masood Ghotbi and M Ebrahim-Zadeh. Optical second harmonic generation
    properties of bib 3 o 6. Optics Express, 12(24):6002–6019, 2004.
    [69] Wolfgang Sellmeier. Iii. ueber die durch die aetherschwingungen erregten
    mitschwingungen der k ̈orpertheilchen und deren r ̈uckwirkung auf die erstern,
    besonders zur erkl ̈arung der dispersion und ihrer anomalien. Annalen der
    Physik, 221(3):399–421, 1872.
    [70] H Hellwig, J Liebertz, and Linear Bohat`y. Linear optical properties of the
    monoclinic bismuth borate bib 3 o 6. Journal of Applied Physics, 88(1):240–
    244, 2000.
    [71] Kentaro Miyata, Nobuhiro Umemura, and Kiyoshi Kato. Phase-matched
    pure χ (3) third-harmonic generation in noncentrosymmetric bib 3 o 6. Op-
    tics letters, 34(4):500–502, 2009.
    [72] Pancho Tzankov and Valentin Petrov. Effective second-order nonlinearity
    in acentric optical crystals with low symmetry. Applied optics, 44(32):6971–
    6985, 2005.
    [73] H Hellwig, J Liebertz, and L Bohat`y. Exceptional large nonlinear optical
    coefficients in the monoclinic bismuth borate bib3o6 (bibo). Solid State
    Communications, 109(4):249–251, 1998.
    [74] Valentin Petrov, Masood Ghotbi, Omid Kokabee, Adolfo Esteban-Martin,
    Frank Noack, Alexander Gaydardzhiev, Ivaylo Nikolov, Pancho Tzankov,
    Ivan Buchvarov, Kentaro Miyata, et al. Femtosecond nonlinear frequency
    conversion based on bib3o6. Laser & Photonics Reviews, 4(1):53–98, 2010.
    [75] Max Born and Emil Wolf. Principles of optics: electromagnetic theory of
    propagation, interference and diffraction of light. Elsevier, 2013.
    [76] Herwig Kogelnik and Tingye Li. Laser beams and resonators. Applied optics,
    5(10):1550–1567, 1966.
    [77] Tim Freegarde and Claus Zimmermann. On the design of enhancement
    cavities for second harmonic generation. Optics Communications, 199(5-
    6):435–446, 2001.
    [78] Sree Nirmillo Biswash Tushar, Susanta Dev Nath, Jobaida Akhtar, and Mo-
    hammad Istiaque Reja. Modelling and analysis of z folded solid state laser
    cavity with two curved mirrors. International Journal of Microwave and
    Optical Technology, 13(3):244–253, 2018.
    [79] Herwig Kogelnik. Imaging of optical modes—resonators with internal lenses.
    Bell System Technical Journal, 44(3):455–494, 1965.
    [80] M Brieger, H B ̈usener, A Hese, F v Moers, and A Renn. Enhancement of
    single frequency sgh in a passive ring resonator. Optics Communications,
    38(5-6):423–426, 1981.
    [81] Manfred Gehrtz, Gary C Bjorklund, and Edward A Whittaker. Quantum-
    limited laser frequency-modulation spectroscopy. Journal of the Optical So-
    ciety of America B, 2(9):1510–1526, 1985.
    [82] Henning Vahlbruch, Dennis Wilken, Moritz Mehmet, and Benno Willke.
    Laser power stabilization beyond the shot noise limit using squeezed light.
    Physical review letters, 121(17):173601, 2018.
    [83] Manfred Gehrtz, Wilfried Lenth, Anthony T Young, and Harold S Johnston.
    High-frequency-modulation spectroscopy with a lead-salt diode laser. Optics
    letters, 11(3):132–134, 1986.
    [84] Gary C Bjorklund. Frequency-modulation spectroscopy: a new method for
    measuring weak absorptions and dispersions. Optics letters, 5(1):15–17, 1980.
    [85] Gregory Abbas, Vincent Chan, and Ting Yee. A dual-detector optical het-
    erodyne receiver for local oscillator noise suppression. Journal of Lightwave
    Technology, 3(5):1110–1122, 1985.
    [86] GL Abbas, VWS Chan, and TK Yee. Local-oscillator excess-noise suppres-
    sion for homodyne and heterodyne detection. Optics letters, 8(8):419–421,
    1983.
    [87] R Stierlin, R B ̈attig, P-D Henchoz, and HP Weber. Excess-noise suppression
    in a fibre-optic balanced heterodyne detection system. Optical and quantum
    electronics, 18(6):445–454, 1986.
    [88] STEPHENB Alexander. Design of wide-band optical heterodyne balanced
    mixer receivers. Journal of Lightwave technology, 5(4):523–537, 1987.
    [89] Changqing Cao, Kun Chen, Xiaodong Zeng, Zhejun Feng, Jingshi Shen,
    Xiaobing Zhang, and Ting Wang. Tri-detector heterodyne receiver for noise
    suppression. Optik, 145:38–41, 2017.
    [90] Gary R Janik, Clinton B Carlisle, and Thomas F Gallagher. Two-tone
    frequency-modulation spectroscopy. J. Opt. Soc. Am. B, 3(8):1070–1074,
    1986.
    [91] R Grosskloss, P Kersten, and W Demtr ̈oder. Sensitive amplitude-and phase-
    modulated absorption-spectroscopy with a continuously tunable diode laser.
    Applied Physics B, 58(2):137–142, 1994.
    [92] Pei-Ling Luo, Jinmeng Hu, Yan Feng, Li-Bang Wang, and Jow-Tsong Shy.
    Doppler-free intermodulated fluorescence spectroscopy of 4 he 2 3 p–3 1, 3
    d transitions at 588 nm with a 1-w compact laser system. Applied Physics
    B, 120(2):279–284, 2015.
    [93] J ̈urgen Altmann, Rudolf Baumgart, and Claus Weitkamp. Two-mirror mul-
    tipass absorption cell. Applied Optics, 20(6):995–999, 1981.
    [94] Laurence S Rothman, David Jacquemart, Andr ́e Barbe, D Chris Benner,
    Manfred Birk, LR Brown, MR Carleer, C Chackerian Jr, K Chance, LH et al
    Coudert, et al. The hitran 2004 molecular spectroscopic database. Journal
    of quantitative spectroscopy and radiative transfer, 96(2):139–204, 2005.
    [95] SL Bragg, JW Brault, and WH Smith. Line positions and strengths in the
    h2 quadrupole spectrum. The Astrophysical Journal, 263:999–1004, 1982.
    [96] Cyril Lemarchand, Sinda Mejri, Papa Lat Tabara Sow, Meriam Triki,
    Sean K Tokunaga, Stephan Briaudeau, Christian Chardonnet, Benoˆıt Dar-
    qui ́e, and Christophe Daussy. A revised uncertainty budget for measuring
    the boltzmann constant using the doppler broadening technique on ammo-
    nia. Metrologia, 50(6):623, 2013.
    [97] Christophe Daussy, Mickael Guinet, Anne Amy-Klein, Khelifa Djerroud,
    Yves Hermier, Stephan Briaudeau, Ch J Bord ́e, and Christian Chardon-
    net. Direct determination of the boltzmann constant by an optical method.
    Physical review letters, 98(25):250801, 2007.
    [98] Wei-Ling Chen, Tzu-Ling Chen, and Yi-Wei Liu. Sideband amplitude
    modulation absorption spectroscopy of ch 4 at 1170 nm. Optics Express,
    27(15):21264–21272, 2019.
    [99] N. C. Shie, C. Y. Chang, W. F. Hsieh, Y. W. Liu, and J. T. Shy. Frequency
    measurement of the 6p 3/2 → 7s 1/2 transition of thallium. Physical Review
    A, 88(6):062513, 2013.
    [100] T. L. Chen, I. Fan, H. C. Chen, C. Y. Lin, S. E. Chen, J. T. Shy, and Y. W.
    Liu. Absolute frequency measurement of the 6p 1/2- 7s 1/2 transition in
    thallium. Physical Review A, 86(5):052524, 2012.
    [101] K-J Boller, A Imamo ̆glu, and Stephen E Harris. Observation of electromag-
    netically induced transparency. Physical Review Letters, 66(20):2593, 1991.
    [102] Electromagnetically Induced Transparency. Stephen e. Harris in Physics
    Today, 50(7):36–42, 1997.
    [103] Stanley H Autler and Charles H Townes. Stark effect in rapidly varying
    fields. Physical Review, 100(2):703, 1955.
    [104] Ennio Arimondo. V coherent population trapping in laser spectroscopy. In
    Progress in optics, volume 35, pages 257–354. Elsevier, 1996.
    [105] C Wieman and Th W H ̈ansch. Doppler-free laser polarization spectroscopy.
    Physical Review Letters, 36(20):1170, 1976.
    [106] Marlan O Scully. Resolving conundrums in lasing without inversion via
    exact solutions to simple models. Quantum Optics: Journal of the European
    Optical Society Part B, 6(4):203, 1994.
    [107] Peter L Knight, MA Lauder, and Bill Jack Dalton. Laser-induced continuum
    structure. Physics Reports, 190(1):1–61, 1990.
    [108] Nikolay V Vitanov, Thomas Halfmann, Bruce W Shore, and Klaas
    Bergmann. Laser-induced population transfer by adiabatic passage tech-
    niques. Annual review of physical chemistry, 52(1):763–809, 2001.
    [109] Wolfgang Demtr ̈oder. Laser spectroscopy: basic concepts and instrumenta-
    tion. Springer Science & Business Media, 2013.
    [110] Vladilen S Letokhov and Veniamin Pavlovich Chebotayev. Nonlinear laser
    spectroscopy, volume 4. Springer, 1977.
    [111] Robert C Hilborn. Einstein coefficients, cross sections, f values, dipole mo-
    ments, and all that. American Journal of Physics, 50(11):982–986, 1982.
    [112] A. Joshi and M. Xiao. Electromagnetically induced transparency and its
    dispersion properties in a four-level inverted-y atomic system. Physics Letters
    A, 317(5-6):370–377, 2003.
    [113] S. Khan, V. Bharti, and V. Natarajan. Role of dressed-state interference in
    electromagnetically induced transparency. Physics Letters A, 380(48):4100–
    4104, 2016.
    [114] Y. Zhu and T. N. Wasserlauf. Sub-doppler linewidth with electromag-
    netically induced transparency in rubidium atoms. Physical Review A,
    54(4):3653, 1996.
    [115] J. G-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao. Electromagnetically in-
    duced transparency in ladder-type inhomogeneously broadened media: The-
    ory and experiment. Physical Review A, 51(1):576, 1995.
    [116] T. L. Chen and Y. W. Liu. Sub-doppler resolution near-infrared spectroscopy
    at 1.28 μm with the noise-immune cavity-enhanced optical heterodyne molec-
    ular spectroscopy method. Optics letters, 42(13):2447–2450, 2017.
    [117] Jonathan P Marangos. Electromagnetically induced transparency. Journal
    of modern optics, 45(3):471–503, 1998.
    [118] Hong Cheng, Han-Mu Wang, Shan-Shan Zhang, Pei-Pei Xin, Jun Luo, and
    Hong-Ping Liu. Electromagnetically induced transparency of 87rb in a buffer
    gas cell with magnetic field. Journal of Physics B: Atomic, Molecular and
    Optical Physics, 50(9):095401, 2017.
    [119] Ruwan Senaratne, Shankari V Rajagopal, Zachary A Geiger, Kurt M Fuji-
    wara, Vyacheslav Lebedev, and David M Weld. Effusive atomic oven nozzle
    design using an aligned microcapillary array. Review of Scientific Instru-
    ments, 86(2):023105, 2015.
    [120] Tzu-Ling Chen, Isaac Fan, Hsuan-Chen Chen, Chang-Yi Lin, Shih-En Chen,
    Jow-Tsong Shy, and Yi-Wei Liu. Absolute frequency measurement of the 6 p
    1/2→ 7 s 1/2 transition in thallium. Physical Review A, 86(5):052524, 2012.
    [121] Johannes Schindler. Characterization of an erbium atomic beam. na, 2011.
    [122] Thomas Prescott. Flux and profile measurements of an atomic beam using
    laser cooled atoms. PhD thesis, University of British Columbia, 2016.
    [123] Pavel Fileviez P ́erez, Clara Murgui, and Alexis D Plascencia. Baryogen-
    esis via leptogenesis: Spontaneous b and l violation. Physical Review D,
    104(5):055007, 2021.
    [124] Peter AR Ade, Nabila Aghanim, Charmaine Armitage-Caplan, Mark Ar-
    naud, M Ashdown, F Atrio-Barandela, J Aumont, C Baccigalupi, Anthony J
    Banday, RB Barreiro, et al. Planck 2013 results. xvi. cosmological parame-
    ters. Astronomy & Astrophysics, 571:A16, 2014.
    [125] Victor Mukhamedovich Abazov, B Abbott, M Abolins, Bannanje Sripath
    Acharya, M Adams, Todd Adams, Ernest Aguilo, Guennadi D Alexeev,
    G Alkhazov, A Alton, et al. Evidence for an anomalous like-sign dimuon
    charge asymmetry. Physical Review D, 82(3):032001, 2010.
    [126] Alan Kostelecky. The status of cpt. arXiv preprint hep-ph/9810365, 1998.
    [127] Don Colladay and V Alan Kosteleck`y. Lorentz-violating extension of the
    standard model. Physical Review D, 58(11):116002, 1998.
    [128] V Alan Kosteleck`y and Ralf Lehnert. Stability, causality, and lorentz and
    cpt violation. Physical Review D, 63(6):065008, 2001.
    [129] Oscar W Greenberg. C p t violation implies violation of lorentz invariance.
    Physical Review Letters, 89(23):231602, 2002.
    [130] Makoto Kobayashi and Toshihide Maskawa. Cp-violation in the renormal-
    izable theory of weak interaction. Progress of theoretical physics, 49(2):652–
    657, 1973.
    [131] TD Lee. A theory of spontaneous t violation. Physical Review D, 8(4):1226,
    1973.
    [132] Chien-Shiung Wu, Ernest Ambler, Raymond W Hayward, Dale D Hoppes,
    and Ralph Percy Hudson. Experimental test of parity conservation in beta
    decay. Physical review, 105(4):1413, 1957.
    [133] James H Christenson, Jeremiah W Cronin, Val L Fitch, and Ren ́e Turlay.
    Evidence for the 2 π decay of the k 2 0 meson. Physical Review Letters,
    13(4):138, 1964.
    [134] Andrei D Sakharov. Violation of cp-invariance, c-asymmetry, and baryon
    asymmetry of the universe. In In The Intermissions. . . Collected Works
    on Research into the Essentials of Theoretical Physics in Russian Federal
    Nuclear Center, Arzamas-16, pages 84–87. World Scientific, 1998.
    [135] PGH Sandars. Electric dipole moments of charged particles. Contemporary
    Physics, 42(2):97–111, 2001.
    [136] Eugene D Commins. Electric dipole moments of leptons. In Advances in
    Atomic, Molecular, and Optical Physics, volume 40, pages 1–55. Elsevier,
    1999.
    [137] Yashpal Singh, BK Sahoo, and BP Das. Ab initio determination of the p-and
    t-violating coupling constants in atomic xe by the relativistic-coupled-cluster
    method. Physical Review A, 89(3):030502, 2014.
    [138] Stephen M Barr. T-and p-odd electron-nucleon interactions and the electric
    dipole moments of large atoms. Physical Review D, 45(11):4148, 1992.
    [139] Maxim Pospelov and Adam Ritz. Electric dipole moments as probes of new
    physics. Annals of physics, 318(1):119–169, 2005.
    [140] BC Regan, Eugene D Commins, Christian J Schmidt, and David DeMille.
    New limit on the electron electric dipole moment. Physical review letters,
    88(7):071805, 2002.
    [141] Jason M Amini, Charles T Munger Jr, and Harvey Gould. Electron electric-
    dipole-moment experiment using electric-field quantized slow cesium atoms.
    Physical Review A, 75(6):063416, 2007.
    [142] WC Griffith, MD Swallows, TH Loftus, MV Romalis, BR Heckel, and
    EN Fortson. Improved limit on the permanent electric dipole moment of
    hg 199. Physical review letters, 102(10):101601, 2009.
    [143] MA Rosenberry and TE Chupp. Atomic electric dipole moment measure-
    ment using spin exchange pumped masers of 129 xe and 3 he. Physical review
    letters, 86(1):22, 2001.
    [144] GW Bennett, B Bousquet, HN Brown, G Bunce, RM Carey, P Cushman,
    GT Danby, PT Debevec, M Deile, H Deng, et al. Improved limit on the
    muon electric dipole moment. Physical Review D, 80(5):052008, 2009.
    [145] K Inami, K Abe, R Abe, T Abe, I Adachi, H Aihara, M Akatsu, Y Asano,
    T Aso, V Aulchenko, et al. Search for the electric dipole moment of the τ
    lepton. Physics Letters B, 551(1-2):16–26, 2003.
    [146] CA Baker, DD Doyle, P Geltenbort, K Green, MGD Van der Grinten,
    PG Harris, P Iaydjiev, SN Ivanov, DJR May, JM Pendlebury, et al. Im-
    proved experimental limit on the electric dipole moment of the neutron.
    Physical Review Letters, 97(13):131801, 2006.
    [147] Donghyun Cho, K Sangster, and EA Hinds. Search for time-reversal-
    symmetry violation in thallium fluoride using a jet source. Physical Review
    A, 44(5):2783, 1991.
    [148] JJ Hudson, BE Sauer, MR Tarbutt, and EA Hinds. Measurement of the
    electron electric dipole moment using ybf molecules. Physical Review Letters,
    89(2):023003, 2002.
    [149] Jonathan J Hudson, Dhiren M Kara, IJ Smallman, Ben E Sauer, Michael R
    Tarbutt, and Ed A Hinds. Improved measurement of the shape of the elec-
    tron. Nature, 473(7348):493–496, 2011.
    [150] Eugene D Commins. Berry’s geometric phase and motional fields. American
    journal of physics, 59(12):1077–1080, 1991.
    [151] Arthur Ashkin. Acceleration and trapping of particles by radiation pressure.
    Physical review letters, 24(4):156, 1970.
    [152] William D Phillips and Harold Metcalf. Laser deceleration of an atomic
    beam. Physical Review Letters, 48(9):596, 1982.
    [153] GAML Alzetta, A Gozzini, L Moi, and G Orriols. An experimental method
    for the observation of rf transitions and laser beat resonances in oriented na
    vapour. Il Nuovo Cimento B (1971-1996), 36(1):5–20, 1976.
    [154] EetGORRIOLS Arimondo and G Orriols. Nonabsorbing atomic coherences
    by coherent two-photon transitions in a three-level optical pumping. Nuovo
    Cimento Lettere, 17:333–338, 1976.
    [155] Richard Morgan Whitley and CR Stroud Jr. Double optical resonance. Phys-
    ical Review A, 14(4):1498, 1976.
    [156] HR Gray, RM Whitley, and CR Stroud. Coherent trapping of atomic popu-
    lations. Optics letters, 3(6):218–220, 1978.
    [157] Svenja Knappe, Robert Wynands, John Kitching, Hugh G Robinson, and
    Leo Hollberg. Characterization of coherent population-trapping resonances
    as atomic frequency references. JOSA B, 18(11):1545–1553, 2001.
    [158] Minhua Zhao, Xunda Jiang, Ruihuan Fang, Yuxiang Qiu, Zhu Ma, Chengyin
    Han, Bo Lu, and Chaohong Lee. Laser frequency stabilization via bichro-
    matic doppler-free spectroscopy of an 87 rb d 1 line. Applied Optics,
    60(17):5203–5207, 2021.
    [159] Svenja Knappe, Vishal Shah, Peter DD Schwindt, Leo Hollberg, John Kitch-
    ing, Li-Anne Liew, and John Moreland. A microfabricated atomic clock.
    Applied Physics Letters, 85(9):1460–1462, 2004.
    [160] Rodolphe Boudot, St ́ephane Gu ́erandel, Emeric De Clercq, Noel Dimarcq,
    and Andr ́e Clairon. Current status of a pulsed cpt cs cell clock. IEEE
    Transactions on instrumentation and measurement, 58(4):1217–1222, 2008.
    [161] E Togan, Y Chu, Atac Imamoglu, and MD Lukin. Laser cooling and real-
    time measurement of the nuclear spin environment of a solid-state qubit.
    Nature, 478(7370):497–501, 2011.
    [162] A Aspect, Ennio Arimondo, R e a1 Kaiser, N Vansteenkiste, and C Cohen-
    Tannoudji. Laser cooling below the one-photon recoil energy by velocity-
    selective coherent population trapping. Physical Review Letters, 61(7):826,
    1988.
    [163] Isaac Fan, Tzu-Ling Chen, Yu-Sheng Liu, Yu-Hung Lien, Jow-Tsong Shy,
    and Yi-Wei Liu. Prospects of laser cooling in atomic thallium. Physical
    Review A, 84(4):042504, 2011.
    [164] Lene Vestergaard Hau, Stephen E Harris, Zachary Dutton, and Cyrus H
    Behroozi. Light speed reduction to 17 metres per second in an ultracold
    atomic gas. Nature, 397(6720):594–598, 1999.
    [165] Hamid Reza Hamedi, Emmanuel Paspalakis, Giedrius ˇZlabys, Gediminas
    Juzeli ̄unas, and Julius Ruseckas. Complete energy conversion between light
    beams carrying orbital angular momentum using coherent population trap-
    ping for a coherently driven double-λ atom-light-coupling scheme. Physical
    Review A, 100(2):023811, 2019.
    [166] Koji Motomura and Masaharu Mitsunaga. High-resolution spectroscopy of
    hyperfine zeeman components of the sodium d 1 line by coherent population
    trapping. JOSA B, 19(10):2456–2460, 2002.
    [167] R Wynands and A Nagel. Precision spectroscopy with coherent dark states.
    Applied Physics B: Lasers & Optics, 68(1), 1999.
    [168] Iyyanki V Jyotsna and GS Agarwal. Coherent population trapping at low
    light levels. Physical Review A, 52(4):3147, 1995.
    [169] Iyyanki V Jyotsna and GS Agarwal. Dynamics of coherent population trap-
    ping states in dense systems. Physical Review A, 53(3):1690, 1996.
    [170] Nathan Belcher, Eugeniy E Mikhailov, and Irina Novikova. Atomic clocks
    and coherent population trapping: Experiments for undergraduate labora-
    tories. American Journal of Physics, 77(11):988–998, 2009.
    [171] KF Reim, J Nunn, VO Lorenz, BJ Sussman, KC Lee, NK Langford,
    D Jaksch, and IA Walmsley. Towards high-speed optical quantum mem-
    ories. Nature Photonics, 4(4):218–221, 2010.
    [172] Nathaniel B Phillips, Alexey V Gorshkov, and Irina Novikova. Optimal light
    storage in atomic vapor. Physical Review A, 78(2):023801, 2008.
    [173] J Kou, RG Wan, ZH Kang, L Jiang, L Wang, Y Jiang, and JY Gao. Phase-
    dependent coherent population trapping and optical switching. Physical
    Review A, 84(6):063807, 2011.
    [174] J Vanier. Atomic clocks based on coherent population trapping: a review.
    Applied Physics B, 81(4):421–442, 2005.
    [175] Jacques Vanier, Martin W Levine, Daniel Janssen, and Michael J Delaney.
    On the use of intensity optical pumping and coherent population trapping
    techniques in the implementation of atomic frequency standards. IEEE
    Transactions on Instrumentation and Measurement, 52(3):822–831, 2003.
    [176] Michael Petersen, Moustafa Abdel Hafiz, Emeric de Clercq, and Rodolphe
    Boudot. Microwave phase detection of coherent population trapping reso-
    nance in a cs vapor cell. JOSA B, 39(3):910–916, 2022.
    [177] Xiaochi Liu, Eugene Ivanov, Valeriy I Yudin, John Kitching, and Eliza-
    beth A Donley. Low-drift coherent population trapping clock based on laser-
    cooled atoms and high-coherence excitation fields. Physical Review Applied,
    8(5):054001, 2017.
    [178] Ray-Yuan Chang, Yi-Chi Lee, Wei-Chia Fang, Ming-Tsung Lee, Zong-Syun
    He, Bai-Cian Ke, and Chin-Chun Tsai. A narrow window of rabi frequency
    for competition between electromagnetically induced transparency and ra-
    man absorption. JOSA B, 27(1):85–91, 2010.
    [179] Michael Fleischhauer, Atac Imamoglu, and Jonathan P Marangos. Electro-
    magnetically induced transparency: Optics in coherent media. Reviews of
    modern physics, 77(2):633, 2005.

    QR CODE