簡易檢索 / 詳目顯示

研究生: 季大友
Chi, Ta-Yu
論文名稱: 葉綠囊膜強化奈米碳管光電流
Thylakoid Membrane Enhanced Carbon Nanotubes Photocurrent
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 呂昇益
Lu, Sheng-Yi
連德軒
Lien, Der-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 56
中文關鍵詞: 葉綠囊膜葉綠素光合作用奈米碳管光電流
外文關鍵詞: thylakoid membranes, chlorophyll, photosynthesis, carbon nanotubes, photocurrent
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物透過光合作用獲取養分,而葉片中的葉綠囊膜即為光合作用進行的場所,且葉綠囊膜中的葉綠素在光合作用中扮演重要角色。葉綠素利用太陽光能把水分子轉換為氧氣、氫離子與電子。在研究中,我們於聚丙烯薄膜表面塗上銀膠與滴附奈米碳管後,接著把從葉子中萃取出來的葉綠囊膜滴在奈米碳管上,製成可以產生光電流的裝置。當裝置於黑暗的環境中,與接受光照時所產生的光電流不同,前者源自奈米碳管的導電性,後者來自葉綠囊膜產生的光電流,且後者比前者的電流大許多。此外,透過掃描式電子顯微鏡可以觀察到葉綠囊膜聚集而形成的葉綠餅結構,且透過紫外光-可見光光譜分析法可以觀察到葉綠囊膜中的葉綠素的光譜結構。


    The plants gain nutrients through photosynthesis. The thylakoid membranes inside leaves are the places where photo-synthesis occurs, and the chlorophylls inside the thylakoid membranes play an important role in photosynthesis. They utilize photo-energy to convert water into oxygen, hydronium and electrons. In this research, thin films made of polypropene is painted with silver made conductive stripes and carbon nanotubes. Thylakoid membranes, extracted from leaves, are dropcasted onto carbon nanotubes to manufacture photo-driven devices. Photocurrents with different magnitudes are produced upon illumination-off and -on tests; the former comes from nanotubes and the latter appears to be much greater and is attributed to photocurrent enhancement by thylakoid membranes. Thylakoid membranes aggregate in the form of grana and spectrum of chlorophyll inside the thylakoid membranes can be observed by field emission scan electron microscopy and uv-vis spectrometer.

    Abstract………………………………………………………………………………I 摘要………………………………………………………………………………II Acknowledgement…………………………………………………………………III Introduction……………………………………………………………1 1.1 Chlorophyll…………………………………………………………………1 1.2 Chloroplast & Thylakoid Membrane………………………………………3 1.3 Photosynthesis………………………………………………………………5 1.4 Light-dependent reactions…………………………………………………6 1.5 Light-indendent reactions…………………………………………………9 1.6 Extraction of thylakoid membranes………………………………………10 1.7 Measuring the concentration of chlorophyll of the thylakoid solution……11 2.1 Structure of carbon nanotubes (CNTs)……………………………………11 2.2 The electrical properties of CNTs…………………………………………12 3.1 Dropcasting of thylakoid membranes and CNTs…………………………14 Research Motivation…………………………………………………16 Chemicals………………………………………………………………17 Equipment……………………………………………………………18 Experimental procedure………………………………………………19 1. Extraction of thylakoid membranes…………………………………………19 2. Manufacture of photo-driven devices………………………………………21 3. Manufacture of CNTs-acetone solution……………………………………22 4. Field emission scanning electron microscope (FE-SEM) analyses…………25 5. Ultraviolet-visible spectroscopy (uv-vis spectroscopy)……………………26 6. Measurements of photocurrent………………………………………………28 7. Applying of gate voltages…………………………………………………29 8. The light source……………………………………………………………30 Results and discussion…………………………………………………33 1. FE-SEM Analyses…………………………………………………………33 2. The chlorophyll concentration of thylakoid membrane solution……………34 3. Uv-vis spectrum of thylakoid membrane solution…………………………35 4.1 Photocurrent generation by device made of thylakoid membranes and SWCNTs……………………………………………………………………………38 4.2 Photocurrent generation by device made of thylakoid membranes and MWCNTs……………………………………………………………………………41 4.3 The Interaction Between the Thylakoid Membranes and SWCNTs/MWCNTs.. ………………………………………………………………………………………46 4.4 Photocurrent generation by devices made of SWCNTs/MWCNTs………49 Conclusion……………………………………………………………52 References………………………………………………………………53

    [1] H Croft, JM Chen, “Leaf Pigment Content”, Elsevier Inc., 2017, p.2.
    [2] [3] [4] John C. Gray, et.al. Understanding Photosynthesis: How Does Chlorophyll Absorb Light Energy? University of Cambridge, 2020.
    https://www.saps.org.uk/secondary/teaching-resources/283-photosynthesis-how-does-chlorophyll-absorb-light-energy.
    [5] Reece, et.al. “Campbell Biology” (9th Edition), Pearson Education, 2011, p.193.
    [6] H Croft, JM Chen, “Leaf Pigment Content”, Elsevier Inc., 2017, p.10.
    [7] [8] Reece, et.al. “Campbell Biology” (9th Edition), Pearson Education, 2011, p.186.
    [9] Reece, et.al. “Campbell Biology” (9th Edition), Pearson Education, 2011, p.110.
    [10] Reece, et.al. “Campbell Biology” (9th Edition), Pearson Education, 2011, p.188.
    [11] Reece, et.al. “Campbell Biology” (9th Edition), Pearson Education, 2011, p. 192~193.
    [12] Reece, et.al. “Campbell Biology” (9th Edition), Pearson Education, 2011, p.194.
    [13] Reece, et.al. “Campbell Biology” (9th Edition), Pearson Education, 2011, p.198~199.
    [14] Juan Cuello and María José Quiles. “Fraction of Thylakoid Membranes into Grana and Stroma Thylakoids”, Methods in Molecular Biology, vol.274, 2004, p.2~4.
    [15] Ryosuke Takeuchi, et.al. “Construction of photo-driven bioanodes using thylakoid membranes and multi-walled carbon nanotubes”, Bioelectrochemistry (122), 2018, p.2.
    [16] Hartmut K. Lichtenthaler, Alan R. Wellburn, “Determinations of total carotenoids and chlorophylls a and b of leaves extracts in different solvents”, Biochem. Soc. Trans, 11. p.591~592.
    [17] R. J. Porra, et.al. “Determination of accurate extinction coefficients and simulations equations for assaying chlorophylls a and b extracted with four different solvents: verifications of the concentration of chlorophyll standards by atomic absorption spectroscopy”, Biochemica et Biophysica Acta, 975, 1989. p. 387.
    [18] [19] Hao-Wei Fu, Weng-Kuang Hsu, “Novel Anti-X-Band Materials: Multi walled Cabin Nanotube/Carbon Black/Carbonyl Iron with Glass Fiber Based Composites”, National Tsing Hua University, 2019, p.11.
    [20] Yan-Ru Su, Weng-Kuang Hsu, “Synthesis and Characterization of Multi-walled Carbon Nanotubes/〖"Al" 〗_"2" "O" _"3" /Epoxy Composites”, National Tsing Hua University, 2014, p.6.
    [21] Yu-Hsien Lin, Weng-Kuang Hsu, “The electric-optic-mechanical properties of Carbon nanotube”, National Tsing Hua University, 2011. p. 2.
    [22] Yan-Ru Su, Weng-Kuang Hsu, “Synthesis and Characterization of Multi-walled Carbon Nanotubes/〖"Al" 〗_"2" "O" _"3" /Epoxy Composites”, National Tsing Hua University, 2014, p.6.
    [23] Yan-Ru Su, Weng-Kuang Hsu, “Synthesis and Characterization of Multi-walled Carbon Nanotubes/〖"Al" 〗_"2" "O" _"3" /Epoxy Composites”, National Tsing Hua University, 2014, p.8.
    [24] Hao-Wei Fu, Weng-Kuang Hsu, “Novel Anti-X-Band Materials: Multi walled Cabin Nanotube/Carbon Black/Carbonyl Iron with Glass Fiber Based Composites”, National Tsing Hua University, 2019, p.14.
    [25] Hao-Wei Fu, Weng-Kuang Hsu, “Novel Anti-X-Band Materials: Multi walled Cabin Nanotube/Carbon Black/Carbonyl Iron with Glass Fiber Based Composites”, National Tsing Hua University, 2019, p.15.
    [26] Yan-Ru Su, Weng-Kuang Hsu, “Synthesis and Characterization of Multi-walled Carbon Nanotubes/〖"Al" 〗_"2" "O" _"3" /Epoxy Composites”, National Tsing Hua University, 2014, p.8.
    [27] Ryosuke Takeuchi, et.al. “Construction of photo-driven bioanodes using thylakoid membranes and multi-walled carbon nanotubes”, Bioelectrochemistry (122), 2018, p.5.
    [28] [29] Yang Liu, et.al. “Evaluating the efficiency of a photoelectrochemical electrode constructed with photosystem II-enriched thylakoid membrane fragments”, Bioelectrochemistry (124), 2018, p.2.
    [30] W. K. Hsu, et.al. “Circuit elements in carbon nanotube-polymer composites”, Carbon 42, 2004, p.1709.
    [31] [32] Chien-Min Wang, et. al. “Materials Analysis”, Materials Research Society-Taiwan, 2014, p.133.
    [33] [34] Muhammad Sajid Hamid Akash, Kanwal Rehman. “Essentials of Pharmaceutical Analysis”, Springer, 2020, p.29~56.
    [35] Yang Liu, et.al. “Evaluating the efficiency of a photoelectrochemical electrode constructed with photosystem II-enriched thylakoid membrane fragments”, Bioelectrochemistry (124), 2018, Supplementary data, p.1~2.
    [36] Michael Allaby. “Dictionary of Plant Sciences 2 ed.”, Oxford University Press, 2006.
    [37] NanoLab Team. “”Single Wall Carbon Nanotubes”, NanoLab, Inc, 2020.
    [38] Ivan Obronov, et.al. “Field Emission Properties of Single-Walled Carbon Nanotube Films”, Journal of Nanoelectronics and Optoelectronics 8(1), 2013, p.72.
    [39] same as [35].
    [40] Yang Liu, et.al. “Evaluating the efficiency of a photoelectrochemical electrode constructed with photosystem II-enriched thylakoid membrane fragments”, Bioelectrochemistry (124), 2018, p.3.
    [41] Yang Liu, et.al. “Evaluating the efficiency of a photoelectrochemical electrode constructed with photosystem II-enriched thylakoid membrane fragments”, Bioelectrochemistry (124), 2018, Supplementary data, p.6.
    [42] Lucia Guidi, et.al. “How does Chloroplast Protect Chlorophyll Against Excessive Sunlight?”, ResearchGate, 2017, p.23.
    [43] Karim El Shabrawy, et.al. “Modeling SWCNT Bandgap and Effective Mass Variation Using a Monte Carlo Approach”, IEEE Transaction on Nanotechnology, Vol.9. No.2., 2010, p187.
    [44] Paul C. P. Watts, et.al.. “Are Bulk Defective Carbon Nanotube Less Electrically Conducting?”, Nanoletters Vol. 3, No.4, 2003, p.551.
    [45] M I Tingaev, E A Belenkov, “Hybrid 〖"sp" 〗^"2" +〖"sp" 〗^"3" carbon phases created from carbon nanotubes”, Journal of Physics, 2017, p.1.
    [46] Robert More, Jack Bokros. “Biomaterials: Carbon”, Encyclopedia of Medical Devices and Instrumentation, 2006, p.298.
    [47] M I Tingaev, E A Belenkov, “Hybrid 〖"sp" 〗^"2" +〖"sp" 〗^"3" carbon phases created from carbon nanotubes”, Journal of Physics, 2017, p.4.
    [48] Florian Libisch. “The Wonder World Graphene”, Wiley Analytical Science, November 28th 2017.
    [49] M I Tingaev, E A Belenkov, “Hybrid 〖"sp" 〗^"2" +〖"sp" 〗^"3" carbon phases created from carbon nanotubes”, Journal of Physics, 2017, p.3

    QR CODE