簡易檢索 / 詳目顯示

研究生: 蔡碩承
Tsai, Shuo-Cheng
論文名稱: 核能級石墨於超高溫氣冷反應器爐心環境下之微結構變化及使用壽命評估
Lifetime Evaluation of Nuclear Grade Graphite in Advanced Very High Temperature Gas-cooled Reactor(VHTR) Core Environment Using HRTEM Microstructural Analysis
指導教授: 開執中
Kai, Ji-Jung
陳福榮
Chen, Fu-Rong
口試委員: 葉宗洸
開物
黃爾文
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 134
中文關鍵詞: 核能級石墨穿透式電子顯微鏡超高溫氣冷式反應器
外文關鍵詞: Nuclear Grade Graphite, TEM, VHTR
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用高能量帶電的碳離子(3MeV C2+)在超高真空(<5x10-7torr)高溫條件(>600℃),用以模擬在新世代核反應器-超高溫氣冷反應器(Very High Temperature Gas-Cooled Reactor: VHTR)爐心內之劑量以及高溫環境下,核能級石墨材料其內部受到粒子轟擊後的顯微結構變化。利用場發穿隧式電子顯微鏡(FEG-TEM)所獲得的低倍率影像以及高解析度影像(HRTEM images)分析離子輻照後核能級石墨內部基面(Basal plane){0002}以及{21 ̅1 ̅0}的晶格常數改變量以及其亂度係數(Disorder coefficient)的分析數據,再結合早期單晶熱解石墨相關文獻,導入結構因子以及孔洞增生因子等系數,修正單晶下之模型,進而評估不同種類之多晶核能級石墨於未來超高溫氣冷反應器內部的使用壽命以及體積變化議題。
    藉本研究使用之模型可以觀測到,核能級石墨IG-110在600℃時其最大體積變化率約為-6.02%,其所恢復到原始體積(Lifetime)之劑量約為30.5dpa,而相同輻照環境下之核能級石墨ATR-2E則約為25dpa。而在更高溫之環境下,兩者的使用壽命皆大幅下降,在800℃時IG-110之使用壽命為25.5dpa、ATR-2E則僅為18.5dpa,在950℃時IG-110石墨壽命也降為19dpa,而利用線性外插後所得到之IG-110, 1050℃晶格變化量帶入此模型內,估計其壽命為10.5dpa,若以此壽命估計,在爐心內部承受最高劑量之石墨約每五年就必須更換材料,以確保爐心內部的結構安全性,而利用此模型亦可預測石墨材料於未來更高溫輻照條件下的體積變化及使用壽命評估。
    除了使用年限之外,本研究也利用晶格變化來計算高溫時石墨內部受到輻照所儲存的能量,在高溫輻照下,根據本研究所建立之model指出,高溫輻照時之儲存能將不再是一個安全顧慮。


    In this work, Nuclear grade graphite were irradiated by 3 MeV C2+ ion under high temperatures(>600℃) and ultrahigh vacuum (<5x10-7torr) environment to simulate the same radiation damage level in High Temperature Gas-Cooled Reactor(HTGR) environment. Graphite {0002} and {21 ̅1 ̅0} plane were investigated by FEG-TEM high resolution images. Fast Fourier transform was applied to calculate the average lattice parameters after irradiation. Microstructural evolution analyzed in this study including change of lattice parameters、disorder coefficients were intergraded with structure factor、pore generation factor to develop a model for lifetime and volume change evaluation inside nuclear grade graphite after different irradiation temperatures and fluences.
    Our model estimated that IG-110 irradiated at 600℃, its maximum volume change reached -6.02% and its lifetime is about 30.5dpa which is very close to experiment carried by neutron. For ATR-2E graphite, its lifetime reaches 25.5dpa in the same irradiated temperature(600℃). At higher irradiated temperature (800), both the lifetime of two graphite decayed seriously. (lifetime is 25.5dpa for IG-110 and 18.5dpa for ATR-2E). According to calculation, graphite block in the highest irradiation fluence region should be replaced every 5 years to insure the structural integrity under irradiation.
    Another part of this study showed calculation results of the energy storage inside graphite at high temperature irradiation. At high temperature irradiation condition(>600℃), stored energy is less than 10cal/g. This value is quite small compared to previous study (500cal/g at 150℃). From our results, energy storage in graphite would no longer be a problem in VHTR environment.

    目錄 摘要 I Abstract II 致謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 前言 1 1-1研究緣起 1 1-2研究目的 3 第二章 文 獻 回 顧 11 2-1核分裂反應器之基本構造 11 2-2超高溫氣冷式核能反應器(VHTR) 12 2-2-1 高溫器冷反應器(HTGR)的發展沿革 13 2-2-2 結構設計特性 15 2-2-3反應器高溫設計 18 2-2-4氫能源 19 2-3核能級石墨 20 2-3-1 碳的基本結構與性質 21 2-3-2 石墨材料於核分裂反應器內之運用 23 2-3-3 核能級石墨材料演進史 24 2-3-4核能級石墨材料的輻射損傷 25 2-3-5維格納效應(Wigner Effect) 26 2-3-6輻照後之尺寸變化(Volume and Dimensional Change) 27 第三章 實驗原理與方法 46 3-1 SRIM程式模擬計算 46 3-2 快速傅立葉轉換(Fast Fourier Transform,FFT) 47 3-3 離子佈植照射系統 48 3-3-1 加速器系統 48 3-3-2入射粒子與靶材之交互作用 49 3-3-3 三射束離子照射系統 49 3-4 照射實驗流程 50 3-5 實驗分析 50 3-5-1 電子顯微鏡原理 50 3-5-2 電子束與物質交互作用 51 3-5-3 電子顯微鏡系統 51 3-5-4 電子槍 52 3-6 TEM試片製備 53 第四章 結果討論 64 4-1 低倍率TEM以及HRTEM影像分析 64 4-1-1 200keV電子束對石墨試片之影響 64 4-1-2 不同照射劑量之HRTEM影像分析a、c平面方向平面間距 66 4-1-3 不同照射溫度之HRTEM影像分析a、c平面方向平面間距 67 4-2 c平面方向之亂度(Degree of disorder)分析 68 4-2-1 定義亂度係數(Disorder coefficient) 68 4-2-2 不同照射劑量之亂度係數(Disorder coefficient)比較 69 4-2-3 不同照射溫度之亂度係數比較 69 4-2-4 高度石墨化之核能級石墨內部輻射損傷機制 70 4-2-5 高溫離子輻照與中子輻照後石墨內部晶格常數變化差異 72 4-3石墨內部應變能之計算 73 4-3-1 彈性變形部分 74 4-3-2 塑性變形部分 74 4-3-3不同照射條件之累積應變能比較 75 4-3-4材料內部應變能釋放可能造成溫度上升的影響 78 4-3-5 退火效應 79 4-4 核能級石墨體積變化及使用壽命評估 79 4-4-1輻照後單晶石墨之尺寸變化 80 4-4-2 多晶核能級石墨輻照後所產生之孔洞及尺寸變化 81 4-4-3 輻照後核能級石墨之體積變化以及壽命評估 82 4-4-4估算更高劑量之核能級石墨其使用壽命 82 第五章 結論 123 第六章 未來實驗方向 126 參考文獻 127

    【1】 Kirstin Dow,Thomas E. Downing, 氣候變遷地圖,聯經出版
    公司,2012
    【2】 United Nations Environment Programme, Observed concentrations of
    CO2 cross 400 parts per million threshold at several Global
    Atmosphere Watch stations, world meteorological organization, a
    specialized agency of the United Nations
    【3】 Nuclear Energy Institute, U.S. Electricity Production Costs
    1995-2012, In 2012 cents per kilowatt-hour
    【4】 核能簡訊,132,財團法人核能資訊中心,2011,23-25
    【5】 核能簡訊,132,財團法人核能資訊中心,2011,1-10
    【6】 U.S. DOE Nuclear Energy Research Advisory Committee and
    the Generation IV International Forum,A technology Roadmap
    for Generation IV Nuclear Energy Systems, (page5-6) 2012
    【7】 梁啓源,油電價格調整與核能政策
    【8】 立法院公報 第100 卷 第57 期 委員會紀錄
    【9】 A Technology Roadmap for Generation IV Nuclear Energy Systems
    Issued by the U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002, p.48
    【10】 David Petti ,An Overview of the NGNP Project and Status of
    technology Development
    【11】 任漢亞, 三維瀝青基碳碳複合材料應用於超高溫氣冷式反應
    器(VHTR)爐心環境之微結構變化, 國立清華大學碩士論文
    【12】 R.B. Vilim, E.E. Feldman, W.D. Pointer, T.Y.C. Wei, Generation IV
    Nuclear Energy System Initiative Initial VHTR Accident Scenario
    Classification: Models and Data
    【13】 David L. Moses,Very High-Temperature Reactor (VHTR) Proliferation
    Resistance and Physical Protection (PR&PP) , 2010/08
    【14】 黃慶東,核能發電本課程訓練教材,B.3-92~94.清華大學原子
    科學院編印
    【15】 謝佾蒼,核能級石墨應用於模擬高溫氣冷式反應器爐心環境
    之微結構變化與累積應變能之研究, 國立清華大學碩士論文
    【16】 B.J. Marsden, Reactor Core Design principles AGR and HTR, P.6~9
    【17】 HTGR Technology Course for the Nuclear Regulatory
    Commission May 24 – 27, 2010 Module 9 Graphite
    【18】 E.Fitzer and L.M. Manocha, "Carbon reinforcement and
    Carbon/Carbon Composites”,Springer, Berlin, 1998
    【19】 P. Billot,D. Barbier,Very high temperature reactor(VHTR) the french
    atomic energy commission(CEA) R&D program,2004ERY HIGH
    【20】 H. C. Lee, C. K. Jo, H. J. Shim, Y Kim, J. M. Noh, Decay heat analysis
    of VHTR cores by Monte Carlo core depletion calculation, Annals of
    Nuclear Energy, 37, (2010) 1356–1368
    【21】 D. Petti,W. Windes, Fuel and Graphite Needs for VHTR
    【22】 D. Petti,“NGNP Technology Development”, FY 2009 Office
    of Nuclear Energy University Program Workshop(2008)
    【23】 盧銀娟、楊宇、石俠民, “球床模塊式高溫氣冷堆的研究及
    發展現狀 ”, p1~7,核電 站 2002年第 11期(2002)
    【24】 C. H. Oh, C. Davis, R. Barner, P. Pickard, “Thermal
    Hydraulic Analysis of HTGRCoupled With Hydrogen Plant”, ANS
    Annual Meeting,2006/07
    【25】 Forschungszentrum Juelich ,HTR Technological Developments
    &Potential Market Werner von Lensa
    【26】 K.Kunitomi, X.Yan, T. Nishihara, N. Sakaba and T. Mouri, Jaea's
    VHTR for hydrogen and electricity cogeneration : GTHTR300C
    Nuclear Engineering and technology, 39(2007) 9-20
    【27】 吳 晟, 明日綠色能源之星──氫能源 吳 晟
    【28】 J. Sumita, Graphite and Composite Material Information,
    Exchange Meeting of JAEA and NTHU on Generation-IV
    VHTR and Related Technologies at JAEA Oarai Japan,2009/11
    【29】 S. Shiozawa , Present Status and Plan of Research and Development on
    HTTR and Hydrogen Production in JAERI, 3rd IPHE Steeling
    Committee Meeting, Paris France, 2005
    【30】 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,“工程材料
    科學"全華科技圖書股份有限公司印行。
    【31】 G. Savage , ”Carbon-Carbon composites”, Chapman Hall,1993
    【32】 B.T. Kelly , Physics of Graphite, Applied Science, London,
    pp.1-361, 1981.
    【33】 H.O. Pierson, Handbook of Carbon, Graphite, Diamond and
    Fullerenes , Noyes, New Jersey, pp.1-69, 1993.
    【34】 賴耿陽,“碳材料化學與工學",復漢出版社
    【35】 E .Fitzer, The Future of Carbon-Carbon composites, Carbon,
    Vol.25, pp.163-190, 1987.
    【36】 F.J.Clauss , Solid Lubricants and Self-Lubricating Solids,
    Academic Press, New York, pp.43-74, 1972.
    【37】 R. E. Nightingale, Nuclear Graphite, 1962
    【38】 G. B. Engle and W. P. Eatherly, A review of high-temperature graphite
    irradiation behavior ,Gulf General Atomic Project 271, 1972
    【39】 M.S.Dresselhaus, R.Kalish ,Ion implantation in diamond, graphite and
    related materials, 1992
    【40】 M.A. Fütterer,G. Berg, A. Marmier,Irradiation results of avrfuel pebbles
    at increased temperature and burn up in HFR petten,2006
    【41】 J. Koike, D. F. Pedraza, Dimensional changes in highly oriented
    pyrolytic graphite due to electron – irradiation, 1994
    【42】 G. Haag, Properties of ATR-2E Graphite and Property Changes due to
    Fast Neutron Irradiation
    【43】 Glasstone & Sesonke. Nuclear Reactor Engineering.
    Springer,1994
    【44】 R.H. Telling, C. P. Ewels, Wigner defects bridge the graphite gap, 2003
    【45】 N. C. Gallego, T. D. Burchell, A Review of Stored Energy Release of
    Irradiated Graphite Washington, DC, U.S. Nuclear Regulatory
    Commission,2011
    【46】 IAEA, Characterization, Treatment and Conditioning of
    Radioactive Graphite from Decommissioning of Nuclear
    Reactors, 2006
    【47】 T. Oku, M. Ishihara , Lifetime evaluation of graphite components for
    HTGRs,Nuclear Engineering and Design 227 (2004) 209–217
    【48】 T. D. Burchell, Physica Scripta. Vol. T64, 17-25, 1996
    【49】 Ya.I. Shtrombakh, B.A. Gurovich, P.A. Platonov, V.M. Alekseev,
    Radiation damage of graphite and carbon-graphite materials” , Journal
    of Nuclear Materials, 225 (1995) 273-301
    【50】 黃偉豪,新型核能級石墨於超高溫氣冷式反應器空氣進氣事故之氧
    化效應, 國立清華大學碩士論文
    【51】 T. Tanabe, Radiation Damage of Graphite - Degradation of
    Material, Parameters and Defect Structures, Physica Scripta. Vol.
    T64, 7-16, 1996
    【52】 J.F. Ziegler, J.P. Biersack, and U. Littmark, Stopping and Range
    of Ions in Solids, Vol. 1 (Pergamon Press, New York,1985)
    【53】 J. W. Goodman, Introduction to Fourier optics, 1992
    【54】 J.L. Dillenseger, S. Esneault, Fast FFT-based bioheat transfer equation
    Computation, Computers in Biology and Medicine ,40 (2010) 119-123
    【55】 吳泰伯、許樹恩, X光繞射原理與材料結構分析, 1993
    【56】 物理會刊十二卷一期1990年
    【57】 R. Olander, “Fundamental aspects of nuclear reactor fuel elements”,
    1976.
    【58】 吳聲旺,國立清華大學工程與系統科學研究所碩士論文,2007.
    【59】 科儀叢書3, 材料電子顯微鏡學, 國科會精儀中心.
    【60】 汪建民, 杜正恭, 材料分析 中國材料科學學會 1998.
    【61】 A. N. Jones and B. J. Marsden, Nuclear Graphite Manufacture,
    Microstructure and virgin Properties, Carbonowaste Abbeye St Jacut
    2010
    【62】 S. Mohanty and S. Majumdar, HTGR Graphite Core Component Stress
    Analysis Research Program – Task 1 Technical Letter Report, U.S.
    Nuclear Regulatory Commission, Washington, DC, 2011
    【63】 P. G. Lucasson, R. M. Walker, Production and recovery of
    electron-induced radiation damage in a number of metals, Physical
    review, Volume 127 No.2, 485-500, 1962
    【64】 David B. Williams, C. Barry Carter, Transmission electron
    microscopy, 1996
    【65】 D.K.L. Tsang, B.J. Marsden, The development of a stress analysis code
    for nuclear graphite components in gas-cooled reactors, Journal of
    Nuclear Materials, Volume 350, Issue 3, 1, (2006) 208–220
    【66】 T. Tanabe, Radiation damage of graphite - degradation of material
    parameters and defect structures, Physica Scripta. Vol. T64, 7-16, 1996
    【67】 F.Pedraza, J. Koike, Dimensional changes in grade H-451 nuclear
    graphite due to electron irradiation, carbon, Vol. 32, No. 4, (1994)
    727-734
    【68】 M.V. Arjakov , A.V. Subbotin, S.V. Panyukov , O.V. Ivanov ,
    A.S.Pokrovskii , D.V. Kharkov, Irradiation induced dimensional
    changes in graphite: The influence of sample size, Journal of
    Nuclear Materials 420 (2012) 241–251
    【69】 T.D. Burchell, P.J. Pappano, J.P. Strizak , A study of the annealing
    behavior of neutron irradiated graphite,Carbon Volume 49, Issue
    1, January 2011, Pages 3–10
    【70】 George E. Dieter, Mechanical Metallurgy, 1986
    【71】 Y. Ma, Simulation of interstitial diffusion in graphite, Physical review B
    76, 2007
    【72】 M. Ishihara, J. Sumita, T. Shibata, T. Iyoku, T. Oku, Principle design
    and data of graphite components,Nuclear Engineering and Design 233
    (2004) 251–260
    【73】 H. Ugachi, S. Ishiyama, M. Eto, Fracture Behavior of Nuclear
    Graphites under Tensile Impact Loading, Journal of the Atomic Energy
    Society of Japan, vol.36, No.2, (1994)138-145
    【74】 K. Urita,K. Suenaga, T. Sugai, H. Shinohara,S. Iijima, In Situ
    Observation of Thermal Relaxation of Interstitial-Vacancy Pair Defects
    in a Graphite Gap, physical review letters,94 (2005)
    【75】 Karthik , J. Kane, D.P. Butt, W.E. Windes , R. Ubic, In situ transmission
    electron microscopy of electron-beam induced damage process in
    nuclear grade graphite, Journal of Nuclear Materials 412 (2011) 321–
    326
    【76】 Burchell T, Carbon Materials for Advanced Technologies, Chpt.
    13 (1999) p. 429
    【77】 J Rappeneau, J.L Taupin, J Grehier, Energy released at high temperature
    by irradiated graphite,Carbon 9 (1966) 115-124
    【78】 Todd Allen, generation IV systems and materials, advanced
    computational materials science: application to fusion and
    generation-IV fission reactors, 2004
    【79】 T. Burchell, R. Bratton, W. Windes, NGNP graphite selection and
    acquisition strategy materials technology,2007
    【80】 J. E. Brocklehurst , B. T. Kelly, the dimensional change of
    highly-oriented pyrolytic graphite irradiated with fast neutrons at 430
    ℃ and 600℃,Carbon. Vol. 31,(1993) 179-183
    【81】 P. J. Hacker, G. B Neighbour, B. McEnaney, The coefficient of thermal
    expansion of nuclear graphite with increasing thermal oxidation, J.
    Phys. D: Appl. Phys. 33 (2000) 991–998
    【82】 J. E. Brocklehurst , B. T. Kelly, analysis of the dimensional changes and
    structural changes in polycrystalline graphite under fast neutron
    irradiation, Carbon. Vol. 3l.No. 1.(1993)155-178
    【83】 S. Ishiyama, T.D. Burchell, J.P. Strizak, M. Eto, The effect of high
    fluence neutron irradiation on the properties of a fine-grained isotropic
    nuclear graphite, Journal of Nuclear Materials 230 (1996) 1-7aterial

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE