研究生: |
陳其男 Chen, Chi-Nan |
---|---|
論文名稱: |
仿高砂熊蟬的翅膀奈米結構提升單晶矽的機械強度 Strengthening of Single Crystal Silicon by Mimicking the Surface Nanostructures on Cicada's Wing |
指導教授: |
葉哲良
Yeh, J. Andrew |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 117 |
中文關鍵詞: | 機械強度 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A strengthening method, nanohole strengthening, is proposed by mimicking the surface nanostructures on Cryptotympana takasagona Kato cicada's wing. Nanohole plates maintain the Young's modulus and the characteristics of brittle material because only surface morphology is modified. The nanoholes patterned on the region of tensile bending stress dominate the failure behavior and determine the bending stress at rupture. The bending stress at rupture of nanohole plates is 6 times larger than that of polished plates. The dynamic response of nanohole plates with the dimensions of 40 mm × 10 mm × 0.1 mm sustains the flapping frequency of 40 Hz and the displacement of 2 cm without failure behavior, performing the remarkable deflection in vibration environment.
[1]B. Yang and X. M. Chen, "Alumina ceramics toughened by a piezoelectric secondary phase," Journal of the European Ceramic Society, vol. 20, pp. 1687-1690, 2000.
[2]K. A. Munzer, K. T. Holdermann, R. E. Schlosser, and S. Sterk, "Thin monocrystalline silicon solar cells," Ieee Transactions on Electron Devices, vol. 46, pp. 2055-2061, 1999.
[3]D. Y. Khang, H. Q. Jiang, Y. Huang, and J. A. Rogers, "A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates," Science, vol. 311, pp. 208-212, 2006.
[4]D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. G. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, "Stretchable and foldable silicon integrated circuits," Science, vol. 320, pp. 507-511, 2008.
[5]P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature, vol. 424, pp. 852-855, 2003.
[6]A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. P. Nicorovici, "Photonic engineering - Aphrodite's iridescence," Nature, vol. 409, pp. 36-37, 2001.
[7]A. Sweeney, C. Jiggins, and S. Johnsen, "Insect communication: Polarized light as a butterfly mating signal," Nature, vol. 423, pp. 31-32, 2003.
[8]P. Vukusic, B. Hallam, and J. Noyes, "Brilliant whiteness in ultrathin beetle scales," Science, vol. 315, pp. 348-348, 2007.
[9]R. Blossey, "Self-cleaning surfaces - virtual realities," Nature Materials, vol. 2, pp. 301-306, 2003.
[10]A. R. Parker and C. R. Lawrence, "Water capture by a desert beetle," Nature, vol. 414, pp. 33-34, 2001.
[11]C. Sanchez, H. Arribart, and M. M. G. Guille, "Biomimetism and bioinspiration as tools for the design of innovative materials and systems," Nature Materials, vol. 4, pp. 277-288, 2005.
[12]G. E. Fantner, T. Hassenkam, J. H. Kindt, J. C. Weaver, H. Birkedal, L. Pechenik, J. A. Cutroni, G. A. G. Cidade, G. D. Stucky, D. E. Morse, and P. K. Hansma, "Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture," Nature Materials, vol. 4, pp. 612-616, 2005.
[13]G. Mayer, "Rigid biological systems as models for synthetic composites," Science, vol. 310, pp. 1144-1147, 2005.
[14]P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. D. Xu, H. Nandivada, B. G. Pumplin, J. Lahann, A. Ramamoorthy, and N. A. Kotov, "Ultrastrong and stiff layered polymer nanocomposites," Science, vol. 318, pp. 80-83, 2007.
[15]A. Rinaldi, "Naturally better - Science and technology are looking to nature's successful designs for inspiration," Embo Reports, vol. 8, pp. 995-999, 2007.
[16]G. Y. Xie, G. M. Zhang, F. Lin, J. Zhang, Z. F. Liu, and S. C. Mu, "The fabrication of subwavelength anti-reflective nanostructures using a bio-template," Nanotechnology, vol. 19, pp. 095605-1-095605-5, 2008.
[17]F. Song, K. L. Lee, A. K. Soh, F. Zhu, and Y. L. Bai, "Experimental studies of the material properties of the forewing of cicada (Homoptera, Cicadidae)," Journal of Experimental Biology, vol. 207, pp. 3035-3042, 2004.
[18]P. R. Stoddart, P. J. Cadusch, T. M. Boyce, R. M. Erasmus, and J. D. Comins, "Optical properties of chitin: surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings," Nanotechnology, vol. 17, pp. 680-686, 2006.
[19]X. J. Feng and L. Jiang, "Design and creation of superwetting/antiwetting surfaces," Advanced Materials, vol. 18, pp. 3063-3078, 2006.
[20]T. L. Sun, L. Feng, X. F. Gao, and L. Jiang, "Bioinspired surfaces with special wettability," Accounts of Chemical Research, vol. 38, pp. 644-652, 2005.
[21]T. N. Pornsin-Sirirak, S. W. Lee, H. Nassef, J. Grasmeyer, Y. C. Tai, C. M. Ho, and M. Keennon, "MEMS wing technology for a battery-powered ornithopter," in Micro Electro Mechanical Systems, 2000. MEMS 2000. The Thirteenth Annual International Conference on, 2000, pp. 799-804.
[22]D. William, Fundamentals of materials science and engineering: Wiley New York, 2001.
[23]S. Zhang, D. Sun, Y. Q. Fu, and H. J. Du, "Toughening of hard nanostructural thin films: a critical review," Surface & Coatings Technology, vol. 198, pp. 2-8, 2005.
[24]D. Kovar, M. D. Thouless, and J. W. Halloran, "Crack deflection and propagation in layered silicon nitride boron nitride ceramics," Journal of the American Ceramic Society, vol. 81, pp. 1004-1012, 1998.
[25]R. O. Ritchie, "Mechanisms of fatigue-crack propagation in ductile and brittle solids," International Journal of Fracture, vol. 100, pp. 55-83, 1999.
[26]A. G. Evans, "Perspective on the Development of High-Toughness Ceramics," Journal of the American Ceramic Society, vol. 73, pp. 187-206, 1990.
[27]D. Vashishth, J. C. Behiri, and W. Bonfield, "Crack growth resistance in cortical bone: Concept of microcrack toughening," Journal of Biomechanics, vol. 30, pp. 763-769, 1997.
[28]A. M. Popa, G. Anne, J. Vleugels, A. Foissy, and O. Van der Biest, "Suspension development for colloidal shaping of Al2O3-ZrO(2)FGM's," Functionally Graded Materials Viii, vol. 492-493, pp. 777-782, 2005.
[29]Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, and J. M. Xu, "Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites," Acta Materialia, vol. 52, pp. 931-944, 2004.
[30]Q. S. Ma, Z. H. Chen, W. W. Zheng, and H. F. Hu, "Processing and characterization of three-dimensional carbon fiber-reinforced Si-O-C composites via precursor pyrolysis," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 352, pp. 212-216, 2003.
[31]Y. Q. Fu, Y. W. Gu, and H. J. Du, "SiC whisker toughened Al2O3-(Ti, W)C ceramic matrix composites," Scripta Materialia, vol. 44, pp. 111-116, 2001.
[32]K. Peng, Y. Yan, S. Gao, and J. Zhu, "Synthesis of Large-Area Silicon Nanohole Arrays via Self-Assembling Nanoelectrochemistry," Advanced Materials, vol. 14, pp. 1164-1167, 2002.
[33]K. Peng, Y. Yan, S. Gao, and J. Zhu, "Dendrite-Assisted Growth of Silicon Nanoholes in Electroless Metal Deposition," Advanced Functional Materials, vol. 13, pp. 127-132, 2003.
[34]K. Peng and J. Zhu, "Simultaneous gold deposition and formation of silicon nanohole arrays," Journal of Electroanalytical Chemistry, vol. 558, pp. 35-39, 2003.
[35]K. Peng, Z. Huang, and J. Zhu, "Nanoelectronics Fabrication of Large-Area Silicon Nanohole pn Junction Diode Arrays," Advanced Materials, vol. 16, pp. 73-76, 2004.
[36]K. Peng and J. Zhu, "Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution," Electrochimica Acta, vol. 49, pp. 2563-2568, 2004.
[37]K. Peng, Y. Xu, Y. Wu, Y. Yan, S. Lee, and J. Zhu, "Aligned single-crystalline Si nanohole arrays for photovoltaic applications." Small, vol. 1, pp. 1062-1067, 2005.
[38]K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, and J. Zhu, "Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays," Angewandte Chemie International Edition, vol. 44, pp. 2737-2742, 2005.
[39]K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. Lee, and J. Zhu, "Fabrication of Single-Crystalline Silicon Nanoholes by Scratching a Silicon Surface with Catalytic Metal Particles," Advanced Functional Materials, vol. 16, pp. 387-394, 2006.
[40]K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. Lee, "Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanoholes in Aqueous Fluoride Solution," Chemistry - A European Journal, vol. 12, pp. 7942-7947, 2006.
[41]K. Peng, M. Zhang, A. Lu, N. Wong, R. Zhang, and S. Lee, "Ordered silicon nanohole arrays via nanosphere lithography and metal-induced etching," Applied Physics Letters, vol. 90, pp. 163123-1-163123-3, 2007.
[42]M. Zhang, K. Peng, X. Fan, J. Jie, R. Zhang, S. Lee, and N. Wong, "Preparation of Large-Area Uniform Silicon Nanoholes Arrays through Metal-Assisted Chemical Etching." The Journal of Physical Chemistry C, vol. 112, pp. 4444-4450, 2008.
[43]K. Peng, X. Wang, and S. Lee, "Silicon nanohole array photoelectrochemical solar cells," Applied Physics Letters, vol. 92, pp. 163103-1-163103-3, 2008.
[44]Peng, K, Lu, A, Zhang, R, and Lee, S, " Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching," Advanced Functional Materials, vol. 12, p. 3026-3035, 2008.
[45]C. Hsieh, J. Chyan, W. Hsu, and J. Yeh, "Fabrication of Wafer-level Antireflective Structures in Optoelectronic Applications," in Optical MEMS and Nanophotonics, 2007 IEEE/LEOS International Conference on, 2007, pp. 185-186.
[46]A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature, vol. 451, pp. 168-171, 2008.
[47]C. Chartier, S. Bastide, and C. Levy-Clement, "Metal-assisted chemical etching of silicon in HF-H2O2," Electrochimica Acta, vol. 53, pp. 5509-5516, 2008.
[48]C. Y. Chen, C. S. Wu, C. J. Chou, and T. J. Yen, "Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature," Advanced Materials, vol. 20, pp. 3811-3815, 2008.
[49]H. Fang, X. D. Li, S. Song, Y. Xu, and J. Zhu, "Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications," Nanotechnology, vol. 19, pp. 111-112, 2008.
[50]A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. D. Yang, "Enhanced thermoelectric performance of rough silicon nanowires," Nature, vol. 451, pp. 163-168, 2008.
[51]X. Li and P. W. Bohn, "Metal-assisted chemical etching in HF/H2O2 produces porous silicon," Applied Physics Letters, vol. 77, pp. 2572-2574, 2000.
[52]K. Nishioka, S. Horita, K. Ohdaira, and H. Matsumura, "Antireflection subwavelength structure of silicon surface formed by wet process using catalysis of single nano-sized gold particle," Solar Energy Materials and Solar Cells, vol. 92, pp. 919-922, 2008.
[53]Y. M. Yang, P. K. Chu, Z. W. Wu, S. H. Pu, T. F. Hung, K. F. Huo, G. X. Qian, W. J. Zhang, and X. L. Wu, "Catalysis of dispersed silver particles on directional etching of silicon (vol 254, pg 3061, 2008)," Applied Surface Science, vol. 254, pp. 5648-5648, 2008.
[54]K. R. Williams, K. Gupta, and M. Wasilik, "Etch rates for micromachining processing - Part II," Journal of Microelectromechanical Systems, vol. 12, pp. 761-778, 2003.
[55]Y. Jung, A. Pajares, R. Banerjee, and B. Lawn, "Strength of silicon, sapphire and glass in the subthreshold flaw region," Acta Materialia, vol. 52, pp. 3459-3466, 2004.
[56]S. Johansson, J. Schweitz, L. Tenerz, and J. Tiren, "Fracture testing of silicon microelements in situ in a scanning electron microscope," Journal of Applied Physics, vol. 63, p. 4799-4803, 1988.
[57]A. Fitzgerald, R. Dauskardt, and T. Kenny, "Fracture toughness and crack growth phenomena of plasma-etched single crystal silicon," Sensors & Actuators: A. Physical, vol. 83, pp. 194-199, 2000.
[58]T. Yi and C. Kim, "Measurement of mechanical properties for MEMS materials," Measurement Science and Technology, vol. 10, pp. 706-16, 1999.
[59]O. Jadaan, N. Nemeth, J. Bagdahn, and W. Sharpe, "Probabilistic Weibull behavior and mechanical properties of MEMS brittle materials," Journal of Materials Science, vol. 38, pp. 4087-4113, 2003.
[60]T. Namazu, Y. Isono, and T. Tanaka, "Evaluation of size effect on mechanical properties of singlecrystal silicon by nanoscale bending test using AFM," vol. 9, pp. 450-459, 2000.
[61]A. Designation, "Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading," ASTM E855-90, 1998
[62]R. Roark, W. Young, and R. Budynas, Roark's Formulas for Stress and Strain: McGraw-Hill New York, 1975.
[63]Y. Isono, T. Namazu, and T. Tanaka, "AFM bending testing of nanometric single crystal silicon wire atintermediate temperatures for MEMS," in Micro Electro Mechanical Systems, 2001. MEMS 2001. The 14th IEEE International Conference on, 2001, pp. 135-138.
[64]T. Namazu, Y. Isono, and T. Tanaka, "Plastic deformation of nanometric single crystal silicon wire inAFM bending test at intermediate temperatures," Journal of Microelectromechanical Systems, vol. 11, pp. 125-135, 2002.
[65]T. Namazu, Y. Isono, and T. Tanaka, "Evaluation of size effect on mechanical properties of singlecrystal silicon by nanoscale bending test using AFM," Journal of Microelectromechanical Systems, vol. 9, pp. 450-459, 2000.
[66]A. Wereszczak, A. Barnes, K. Breder, and S. Binapal, "Probabilistic strength of {1 1 1} n-type silicon," Journal of Materials Science: Materials in Electronics, vol. 11, pp. 291-303, 2000.
[67]W. Pilkey, Peterson's stress concentration factors: Wiley-Interscience New York, 1997.
[68]Z. Tian, J. Liu, L. Ye, and T. Pian, "Studies oF Stress Concentration by Using Special Hybrid Stress Elements," International Journal for Numerical Methods in Engineering, vol. 40, pp. 1399-1411, 1997.
[69]Z. Li, W. Guo, and Z. Kuang, "Three-dimensional elastic stress fields near nanoholes in finite thickness plates," International Journal of Solids and Structures, vol. 37, pp. 7617-7632, 2000.
[70]D. Bellett, D. Taylor, S. Marco, E. Mazzeo, J. Guillois, and T. Pircher, "The fatigue behaviour of three-dimensional stress concentrations," International Journal of Fatigue, vol. 27, pp. 207-221, 2005.
[71]N. Noda, M. Sera, and Y. Takase, "Stress concentration factors for round and flat test specimens with nanoholes," International Journal of Fatigue, vol. 17, pp. 163-178, 1995.
[72]J. Zhao, X. Wang, L. Dharani, and J. Wei, "Notch stress concentrations and failure characteristics in laminates with triple parallel nanoholes," Composites Science and Technology, vol. 60, pp. 2865-2872, 2000.
[73]J. Zhao and J. Wei, "A modeling analysis for splitting failure of orthotropic laminates with a surface notch," Composites Science and Technology, vol. 56, pp. 1201-1207, 1996.
[74]J. Zhao, Z. Hu, W. Howson, and F. Williams, "Compressive buckling failure of laminates with a surface notch," Composites Science and Technology, vol. 59, pp. 1495-1501, 1999.
[75]J. Zhao, Y. Zhao, and L. Yu, "Stress characteristics of unidirectional composites with triple surface nanoholes," Composites Science and Technology, vol. 55, pp. 261-268, 1995.
[76]R. Cook, D. Malkus, M. Plesha, and R. Witt, Concepts and Applications of Finite Element Analysis: Wiley New York, 2002.
[77]F. J. Guild and R. J. Young, "A Predictive Model for Particulate Filled Composite-Materials .2. Soft Particles," Journal of Materials Science, vol. 24, pp. 2454-2460, 1989.
[78]F. J. Guild and R. J. Young, "A Predictive Model for Particulate-Filled Composite-Materials .1. Hard Particles," Journal of Materials Science, vol. 24, pp. 298-306, 1989.
[79]D. Kujawski, "Estimations of Stress Intensity Factors for Small Cracks at Notches," Fatigue & Fracture of Engineering Materials & Structures, vol. 14, pp. 953-965, 1991.
[80]Y. Leng and T. H. Courtney, "Multiple Shear Band Formation in Metallic Glasses in Composites," Journal of Materials Science, vol. 26, pp. 588-592, 1991.
[81]G. J. Dvorak, "Transformation Field Analysis of Inelastic Composite-Materials," Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, vol. 437, pp. 311-327, 1992.
[82]F. Inzoli, F. Boschetti, M. Zappa, T. Longo, and R. Fumero, "Biomechanical Factors in Abdominal Aortic-Aneurysm Rupture," European Journal of Vascular Surgery, vol. 7, pp. 667-674, 1993.
[83]C. D. Yang and S. S. Pang, "Stress-Strain Analysis of Adhesive-Bonded Single-Lap Composite Joints under Cylindrical Bending," Composites Engineering, vol. 3, pp. 1051-1063, 1993.
[84]G. J. Dvorak, Y. A. Baheieldin, and A. M. Wafa, "Implementation of the Transformation Field Analysis for Inelastic Composite-Materials," Computational Mechanics, vol. 14, pp. 201-228, 1994.
[85]G. J. Dvorak, Y. A. Baheieldin, and A. M. Wafa, "The Modeling of Inelastic Composite-Materials with the Transformation Field Analysis," Modelling and Simulation in Materials Science and Engineering, vol. 2, pp. 571-586, 1994.
[86]R. X. Xu, J. C. Thompson, and T. H. Topper, "Practical Stress Expressions for Stress-Concentration Regions," Fatigue & Fracture of Engineering Materials & Structures, vol. 18, pp. 885-895, 1995.
[87]E. Chang and W. D. Dover, "Stress concentration factor parametric equations for tubular X and DT joints," International Journal of Fatigue, vol. 18, pp. 363-387, 1996.
[88]K. Iida and T. Uemura, "Stress concentration factor formulae widely used in Japan," Fatigue & Fracture of Engineering Materials & Structures, vol. 19, pp. 779-786, 1996.
[89]J. Lai and A. Bakker, "3-D schapery representation for non-linear viscoelasticity and finite element implementation," Computational Mechanics, vol. 18, pp. 182-191, 1996.
[90]P. Lazzarin and R. Tovo, "A unified approach to the evaluation of linear elastic stress fields in the neighborhood of cracks and notches," International Journal of Fracture, vol. 78, pp. 3-19, 1996.
[91]S. T. Smith, V. G. Badami, J. S. Dale, and Y. Xu, "Elliptical flexure hinges," Review of Scientific Instruments, vol. 68, pp. 1474-1483, 1997.
[92]P. Lazzarin and R. Tovo, "A notch intensity factor approach to the stress analysis of welds," Fatigue & Fracture of Engineering Materials & Structures, vol. 21, pp. 1089-1103, 1998.
[93]J. E. Rodriguez, F. P. Brennan, and W. D. Dover, "Minimization of stress concentration factors in fatigue crack repairs," International Journal of Fatigue, vol. 20, pp. 719-725, 1998.
[94]H. Zhao, "Stress concentration factors within bolt-nut connectors under elasto-plastic deformation," International Journal of Fatigue, vol. 20, pp. 651-659, 1998.
[95]A. J. Bellezza, R. T. Hart, and C. F. Burgoyne, "The optic nerve head as a biomechanical structure: Initial finite element modeling," Investigative Ophthalmology & Visual Science, vol. 41, pp. 2991-3000, 2000.
[96]F. Guilak and V. C. Mow, "The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage," Journal of Biomechanics, vol. 33, pp. 1663-1673, 2000.
[97]T. F. Lehnhoff and B. A. Bunyard, "Bolt thread and head fillet stress concentration factors," Journal of Pressure Vessel Technology-Transactions of the Asme, vol. 122, pp. 180-185, 2000.
[98]N. Lobontiu, J. S. N. Paine, E. Garcia, and M. Goldfarb, "Corner-filleted flexure hinges," Journal of Mechanical Design, vol. 123, pp. 346-352, 2001.
[99]N. Lobontiu and J. S. N. Paine, "Design of circular cross-section corner-filleted flexure hinges for three-dimensional compliant mechanisms," Journal of Mechanical Design, vol. 124, pp. 479-484, 2002.
[100]C. Kittel and P. McEuen, Introduction to solid state physics: Wiley New York, 1986.
[101]M. Kamaya, "Growth evaluation of multiple interacting surface cracks. Part I: Experiments and simulation of coalesced crack," Engineering Fracture Mechanics, vol. 75, pp. 1336-1349, 2008.
[102]M. Kamaya, "Growth evaluation of multiple interacting surface cracks. Part II: Growth evaluation of parallel cracks," Engineering Fracture Mechanics, vol. 75, pp. 1350-1366, 2008.
[103]T. L. Anderson, Fracture Mechanics: Fundamentals and Applications: CRC Press Boca Raton, 1995.
[104]T. N. Pornsin-sirirak, Y. C. Tai, H. Nassef, and C. M. Ho, "Titanium-alloy MEMS wing technology for a micro aerial vehicle application," Sensors and Actuators a-Physical, vol. 89, pp. 95-103, 2001.
[105]C. J. Wilson, A. Ormeggi, and M. Narbutovskih, "Fracture testing of silicon microcantilever beams," Journal of Applied Physics, vol. 79, pp. 2386-2393, 1996.