簡易檢索 / 詳目顯示

研究生: 沈煜庭
論文名稱: 冷卻水塔出口水溫最適化操作與高爐爐床爐壁溫度預測模式建立
Optimal Operation for Cooling Towers and Development of a Temperature Model for Blast Furnace Hearth Wall
指導教授: 鄭西顯
口試委員: 鄭西顯
吳煒
張珏庭
姚遠
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 56
中文關鍵詞: 冷卻水塔多模型高爐時間序列
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為兩個部分做討論:第一個部分為冷卻水塔出口水溫的最適化操作,第二個部分為高爐爐床爐壁溫度的預測。
    冷卻水塔普遍應用於發電廠、化學工廠、鋼鐵廠及大型冷凍空調系統。上述場所產生或消耗的電量均很龐大。本研究的構想為將出口水溫做最適化的操作,以期在節能減碳上有所貢獻。本研究使用多模型將不同風扇運轉模式下的出口水溫個別建模,並提出風扇最佳運轉模式,最後到現場進行冷卻水塔出口水溫的最適化操作,確認模型的實用性。冷卻水塔出口水溫最適化操作的研究成果為:不同風扇運轉模式下預測出口水溫的MSE介於0.1~0.2之間,使用多模型可將高溫低濕度及低溫高濕度數據明顯分群,並且到現場測試12hr可節省約794度的電量,並計算其效益為52.34%。
    在鋼鐵廠中,高爐的操作是非常重要的環節,如何降低成本並延長其壽命,就成了一個相當重要的課題。其中,高爐爐床爐壁侵蝕狀況,影響著高爐壽命的長短。針對這部分,現場人員將溫度測點埋入碳磚當中,以做爐床溫度的即時監控,並外加爐壁淋水以用來冷卻爐壁。本研究使用線性模型+IMA(1,1)的方法,來預測爐床爐壁溫度。高爐爐床爐壁溫度的預測結果為MAPE:2.92%、MSE:12.76,模型具預測能力,且爐床爐壁溫度與IMA(1,1)的𝜃值比對結果後可得,𝜃值趨近於1的爐床爐壁溫度變動小,𝜃值趨近於0的爐床爐壁溫度變動大。因此可用𝜃值的變動來抓爐床爐壁溫度升高或降低的趨勢,藉此預測出爐垢掉落的狀況。


    摘要 I 目錄 II 圖目錄 IV 表目錄 VI 第一章 緒論 1 1.1前言 1 1.2研究動機 1 1.2.1 冷卻水塔研究動機 1 1.2.2 高爐研究動機 2 1.3文獻回顧 2 1.3.1 冷卻水塔文獻回顧 2 1.3.2 高爐文獻回顧 4 第二章 冷卻水塔與高爐系統 5 2.1 冷卻水塔系統簡介 5 2.2高爐系統簡介 8 2.2.1高爐爐床溫度及冷卻機制描述 9 2.2.2高爐變數描述 10 第三章 研究方法 12 3.1 冷卻水塔模型 12 3.2 多模型建模 14 3.2.1多模型描述 14 3.2.2 模糊c-Mean分群法(FCM, Fuzzy c-Mean) 15 3.2.3 滿意模糊c-Mean分群法 16 3.2.4 局部模型參數辨識 17 3.2.5 基於局部性能指標的多模型辨識演算法 17 3.2.6 多模型離線建模方法 19 3.3線性回歸 21 3.4逐步方法 22 3.4.1向前選取法 22 3.4.2後退淘汰法 23 3.4.3逐步選取法 24 3.5時間序列 26 3.6移動視窗適應模型 28 第四章 研究成果 29 4.1 CT-3D81出口水溫多模型建立 29 4.2冷卻水塔出口水溫最適化操作off-line運算 41 4.3冷卻水塔出口水溫最適化操作實驗 46 4.4高爐爐床爐壁溫度預測模式建立 50 第五章 結論 54 第六章 參考文獻 55

    [1] F. Merkel, Verdunstungskühlung: VDI-Zeitchrift, 1925, 70(1):123-128.
    [2] H. Jaber and R. L. Webb, "Design of Cooling Towers by the Effectiveness-NTU Method," Journal of Heat Transfer-Transactions of the ASME, vol. 111, pp. 837-843, Feb 1989.
    [3] W. F. Stoecker, Procedures for simulating the performance of components and systems for energy calculations. Atlanta: ASHRAE, 1976.
    [4] M. S. Soylemez, "On the optimum performance of forced draft counter flow cooling towers," Energy Conversion and Management, vol. 45, pp. 2335-2341, Sep 2004.
    [5] J. C. Kloppers and D. G. Kroger, "Cooling tower performance evaluation: Merkel, poppe, and e-NTU methods of analysis," Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, vol. 127, pp. 1-7, Jan 2005.
    [6] G. Y. Jin, W. J. Cai, L. Lu, E. L. Lee, and A. Chiang, "A simplified modeling of mechanical cooling tower for control and optimization of HVAC systems," Energy Conversion and Management, vol. 48, pp. 355-365, Feb 2007.
    [7] X. N. Qi and Z. Y. Liu, "Further investigation on the performance of a shower cooling tower," Energy Conversion and Management, vol. 49, pp. 570-577, Apr 2008.
    [8] S. W. Wang and X. H. Xu, "Effects of alternative control strategies of water-evaporative cooling systems on energy efficiency and plume control: A case study," Building and Environment, vol. 43, pp. 1973-1989, Nov 2008.
    [9] F. W. Yu and K. T. Chan, "Optimization of water-cooled chiller system with load-based speed control," Applied Energy, vol. 85, pp. 931-950, Oct 2008.
    [10] M. Hosoz, H. M. Ertunc, and H. Bulgurcu, "Performance prediction of a cooling tower using artificial neural network," Energy Conversion and Management, vol. 48, pp. 1349-1359, Apr 2007.
    [11] M. Gao, F. Z. Sun, S. J. Zhou, Y. T. Shi, Y. B. Zhao, and N. H. Wang, "Performance prediction of wet cooling tower using artificial neural network under cross-wind conditions," International Journal of Thermal Sciences, vol. 48, pp. 583-589, Mar 2009.
    [12] X. N. Qi, Z. Y. Liu, and D. D. Li, "Numerical simulation of shower cooling tower based on artificial neural network," Energy Conversion and Management, vol. 49, pp. 724-732, Apr 2008.
    [13] G. Gregorcic and G. Lightbody, "Local model network identification with Gaussian processes," IEEE Transactions on Neural Networks, vol. 18, pp. 1404-1423, Sep 2007.
    [14] C. H. Gao, L. Jian, and S. H. Luo, "Modeling of the Thermal State Change of Blast Furnace Hearth With Support Vector Machines," IEEE Transactions on Industrial Electronics, vol. 59, pp. 1134-1145, Feb 2012.
    [15] C. H. Lin, W. T. Cheng, and S. W. Du, "Numerical prediction on the variation of temperature in the eroded blast furnace hearth with titanium dioxide in hot metal," International Communications in Heat and Mass Transfer, vol. 36, pp. 335-341, Apr 2009.
    [16] A. Mithal, T. Hentea, "Computational Model for Estimation of Refractory Wear and Skull Deposition in Blast Furnace Hearth Wall," in 2010 International Joint Conference on Neural Networks Ijcnn 2010, ed New York: IEEE, 2010.
    [17] Y. Zhang, R. Deshpande, D. Huang, P. Chaubal, and C. Q. Zhou, "Numerical analysis of blast furnace hearth inner profile by using CFD and heat transfer model for different time periods," International Journal of Heat and Mass Transfer, vol. 51, pp. 186-197, Jan 2008.
    [18] Z. K. Xue, Li, S.Y., "A multi-model identification algorithm based on weighted cost function and application in thermal process.," Acta Automatica Sinica, vol. 31(3), pp. 470-474, 2005.
    [19] D. C. Montgomery, Peck, E.A., Vining, G.G., Introduction to linear regression analysis(3rd edition). New York: John Wiley & Sons, 2001.
    [20] G. M. J. G.E.P Box, G.C Reinsel, Time Series Analysis Forecasting and Control: Prentice-Hall Inc., 1994.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE