簡易檢索 / 詳目顯示

研究生: 柯康南
KANNAN KEIZER
論文名稱: An nBSS Algorithm for Pharmacokinetic Analysis of Prostate Cancer in DCE-MR Images
指導教授: 祁忠勇
Chi, Chong-Yung
口試委員: 任玄
詹宗翰
陳中明
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 68
中文關鍵詞: 磁共振動態增強成像非負盲蔽訊號源分離
外文關鍵詞: DCE-MRI, nBSS methods
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI)
    provides a non-invasive tool for evaluating tissue time activity
    patterns based on the accumulation and metabolism of the contrast
    agent. Conventional tool for DCE-MRI images analysis is
    pharmacokinetic model that provides kinetic, physiological
    parameters for tissues, such as perfusion, capillary permeability,
    and the volume of extravascular-extracellular space (EES). Although
    kinetic parameters have shown to be relevant to the response of
    therapy and the survival rate, inevitable partial volume effect in
    DCE-MRI images still hinders the quantitative analysis of the
    kinetic parameters.

    In this thesis, we develop an unsupervised non-negative blind source
    separation (nBSS) algorithm to dissect and characterize composite
    signatures in DCE-MRI images of patients with prostate cancers. We
    transform the pharmacokinetic model into a latent variable model, to
    which the nBSS method, named simplex estimation by projection
    (SIMPLE-Pro) is devised. The SIMPLE-Pro algorithm identifies the
    tissue time activity curves (up to scaling ambiguity) with
    theoretical guarantee. The problem of scaling ambiguity is then
    handled by pharmacokinetic model fitting, which we implemented by
    using sequential quadratic programming. Some Monte Carlo simulations
    on synthetic generated prostate DCE-MRI data set and real DCE-MRI
    experiments of seven patients with prostate cancer were performed to
    demonstrate high efficiency of SIMPLE-Pro algorithm, and consistency
    of the extracted information with biopsy test examination. The
    DCE-MRI analysis framework presented in this thesis, which includes
    SIMPLE-Pro algorithm and pharmacokinetic model fitting, can dissect
    complex tissues into regions with differential contrast kinetics at
    pixel-wise resolution and provide a systems biology tool for
    defining imaging signatures predictive of phenotypes.


    ABSTRACT i ACKNOWLEDGMENTS ii CONTENTS iv 1 INTRODUCTION 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation and Our Contributions . . . . . . . . . . . . . . . . . . . . . 6 2 SIGNAL MODEL AND ASSUMPTIONS 9 2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Two-Tissue Compartment Model . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Latent Variable Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 General Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 PROPOSED nBSS ALGORITHM - SIMPLE-PRO 17 4 ESTIMATION OF PHARMACOKINETIC PARAMETERS 23 4.1 Estimation of Kinetic parameters . . . . . . . . . . . . . . . . . . . . . . 24 4.2 Estimation of Tissue Distribution maps . . . . . . . . . . . . . . . . . . . 25 5 COMPUTER SIMULATION RESULTS 27 6 REAL DATA EXPERIMENTS 36 7 CONCLUSIONS 63 REFERENCES 64

    [1] A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, C. Smigal, and M. J. Thun, “Cancer
    statistics, 2010,” CA: A Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277-300,
    Sep. 2010.
    [2] A. L. Potosky, B. A. Miller, P. C. Albertsen, and B. S. Kramer, “The
    role of increasing detection in the rising incidence of prostate cancer,”
    The Journal of the American Medical Association, vol. 273, no. 7, pp. 548-552, 1995.
    [3] N. B. Deongchamps, A. Singh, and G. P. Haas, “Epidemiology of Prostate
    Cancer in Africa: Another Step in the Understanding of the Disease?,”
    Current Problems in Cancer, vol. 31, no. 3, pp. 226-236, June 2007.
    [4] R. P. Myers, “Structure of the adult prostate from a clinician’s standpoint.”
    Clinical Anatomy, vol. 13, pp. 214-15, Apr. 2000.
    [5] E. D. Crawford, “Epidemiology of prostate cancer,” Urology, vol. 62, no. 6, pp. 3-12,
    Dec. 2003.
    [6] H. Gronberg, “Prostate cancer epidemiology,” The Lancet, vol. 361, no. 9360, pp.
    859-864, Mar. 2003.
    [7] G. P. Haas and W. A. Sakr, “Epidemiology of prostate cancer,”.
    CA: A Cancer Journal for Clinicians, vol. 47, no. 5, pp. 273-287, Sep. 1997.
    [8] M. A. Khan and A.W. Partin, “Management of patients with an increasing prostatespecific
    antigen after radical prostatectomy,” Current Urology Reports, vol. 3, no. 3,
    pp. 179-187, Jun. 2004.
    [9] L. R. Kavoussi, E. Sosa, P. Chandhoke, G. Chodak, R. V. Clayman, H. R. Hadley,
    K. R. Loughlin, H. C. Ruckle, D. Rukstalis, and W. Schuessler, “Complications of
    laparoscopic pelvic lymph node dissection,” Journal of Urology, vol. 149, no. 2, pp.
    322-325, Feb. 1993.
    [10] C. E. Neal and L. C. Meis, “Correlative imaging with monoclonal antibodies in
    colorectal, ovarian, and prostate cancer,” Seminars in Nuclear Medicine, vol. 24,
    no. 4, pp. 272-285, Oct. 1994.
    [11] A. V. D’Amico, R. Whittington, M. Schnall, S. B. Malkowicz, J. E. Tomaszewski,
    D. Schultz, and A. Wein, “The impact of the inclusion of endorectal coil magnetic
    resonance imaging in a multivariate analysis to predict clinically unsuspected extraprostatic
    cancer,” Cancer, vol. 75, no. 9, pp. 2368-2372, 1995.
    [12] G. J. Jager, ET Ruijter, C. A. van de Kaa, J. J. de la Rosette, G. O. Oosterhof, J.
    R. Thornbury, and J. O. Barentsz, “Local staging of prostate cancer with endorectal
    MR imaging: correlation with histopathology,” American Journal of Roentgenology,
    vol. 166, no.1, pp. 845-852, Apr. 1996.
    [13] K. Lovett, M. D. Rifkin, P. A. McCue, and H. Choi, “MR imaging characteristics of
    noncancerous lesions of the prostate,” Journal of Magnetic Resonance Imaging, vol.
    2, pp. 35-39, Jan. 1992.
    [14] M. L. Schiebler, J. E. Tomaszewski, M. Bezzi, H. M. Pollack, H. Y. Kressel, E. K. Cohen,
    H. G. Altman, W. B. Gefter, A. J. Wein, and L. Axel, “Prostatic carcinoma and
    benign prostatic hyperplasia: correlation of high-resolution MR and histopathologic
    findings,” Radiology, vol. 172, pp. 131-137, July 1989.
    [15] H. J. Weinmann, R. C. Brasch, W. R. Press, and G. E. Wesbey, “Characteristics
    of gadolinium-DTPA complex: a potential NMR contrast agent,”
    AJR Am J Roentgenol vol. 142, no. 3, pp. 619-624, Mar. 1984.
    [16] P. S. Tofts, “Modeling tracer kinetics in dynamic Gd-DTPA MR imaging,”
    Journal of Magnetic Resonance Imaging, vol. 7, no. 1, pp. 91-101, Jan. 1997.
    [17] J. O. Barentsz, M. Engelbrecht, G. J. Jager, J. A.Witjes, J. LaRosette, B. P. Sanden,
    H. J. Huisman, and A. Heerschap, “Fast dynamic gadolinium-enhanced MR imaging
    of urinary bladder and prostate cancer,” Journal of Magnetic Resonance Imaging,
    vol. 10, no. 3, pp. 295-304, Sep. 1999.
    [18] P. L. Choyke, A. J. Dwyer, and M. V. Knopp, “Functional tumor
    imaging with dynamic contrast-enhanced magnetic resonance imaging,”
    Journal of Magnetic Resonance Imaging, vol. 17, no. 5, pp. 509-520, May 2003.
    [19] R. Alonzi, A. R. Padhani, N. J. Taylor, J. J. Stirling, M. I. Saunders, and P. J.
    Hoskin, “Physiological Changes within the Prostate Caused by Androgen Withdrawal,”
    Clinical Oncology, vol. 19, no. 3, pp. S1-S6, 2007.
    [20] M. D. Plumbley, “Algorithms for non-negative independent component analysis,”
    IEEE Trans. Neural Netw., vol. 14, no. 3, pp. 534-543, May 2003.
    [21] S. A. Astakhow, H. Stogbauer, A. Kraskov, and P. Grassberger, “Monte
    Carlo algorithm for least dependent non-negative mixture decomposition,”
    Analytical Chemistry, vol. 78, pp. 1620-1627, Mar. 2006.
    [22] F.-Y. Wang, Y. Wang, T.-H. Chan, and C.-Y. Chi, ”Blind separation of multichannel
    biomedical image patterns by nonnegative least-correlated component analysis,”
    Lecture Notes Bioinfo., vol. 4146, pp. 151-162, Sep. 2006.
    [23] D. D. Lee and H. S. Seung, ”Learning the parts of objects by non-negative matrix
    factorization,” Nature, vol. 401, no. 6755, pp. 788-791, Aug. 1999.
    [24] A. P.-Montano, J. M. Carazo, K. Kochi, D. Lehmann and
    R. D. P.-Marqui, ”Nonsmooth nonnegative matrix factorization,”
    IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 3, pp.
    403-415, Mar. 2006.
    [25] K. Stadlthanner, F. 1. Theis, E. W. Lang, A. M. Tome, C. G. Puntonet, J. M. Gorriz,
    ”Hybridizing sparse component analysis with genetic algorithms for microarray
    analysis,” Neurocomputing, vol. 71, no. 10, pp. 2356-2376, June 2008.
    [26] P.S. Tofts and A.G. Kermode, “Measurement of the Blood-Brain Barrier permeability
    and leakage space using dynamic MR imaging -1 Fundamental concepts,”
    Magnetic Resonance in Medicine, vol. 17, pp. 357-367, Feb. 1991.
    [27] Y. Wang, 1. Xuan, R. Srikanchana, and P. L. Choyke, “Modeling
    and reconstruction of mixed functional and molecular patterns,”
    International Journal ofBiomedical Imaging, Article ID: 29707, pp. 1-9, 2006.
    [28] T.-H. Chan, W.-K. Ma, C.-Y. Chi and Y. Wang, “A convex analysis framework for
    blind separation of non-negative sources,” IEEE Trans. Signal Processing, vol. 56,
    no. 10, pp. 5120-5134, Oct. 2008.
    [29] P. S. Tofts, G. Brix, D. L. Buckley, J. L. Evelhoch, E. Henderson, M. V. Knopp,
    H. B. Larsson, T. Y. Lee, N. A. Mayr, G. J. Parker, R. E. Port, J. Taylor, and
    R. M. Weisskoff, “Estimating kinetic parameters from dynamic contrast-enhanced
    T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols,”
    Journal of Magnetic Resonance Imaging, vol. 10, no. 3, pp. 223-232, 1999.
    [30] Y.-C. Lin, T.-H. Chan, C.-Y. Chi, S.-H. Ng, H.-L. Liu, K.-C. Wei, Y.-Y. Wai,
    C.-C. Wang, and J.-J. Wang, “Blind estimation of arterial input function in dynamic
    contrast-enhanced MRI using purity maximization,” to be submitted to
    Magnetic Resonance in Medicine.
    [31] S. Boyd and L. Vandenberghe, Convex Optimization, UK: Cambridge Univ. Press,
    2004.
    [32] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
    cones,” Optimiz. Methods Softw., vol. 11–12, pp. 625–653, 1999.
    [33] M. Grant. Disciplined Convex Programming. PhD thesis, Department of Electrical
    Engineering, Stanford University, December 2004. See http: www.stanford.edu/
    ~boyd/disc_cvx_prog.html.
    [34] M. Grant, S. Boyd, and Y. Ye, “Disciplined convex programming,” pp. 155–210 in
    Global Optimization: from Theory to Implementation, Nonconvex Optimization and
    Its Applications, L. Liberti and N. Maculan, Eds., New York, Springer, 2006.
    [35] C. Yang, G. S. Karczmar, M. Medved and W. M. Stadler, “Estimating the arterial
    input function using two reference tissues in dynamic contrast-enhanced MRI studies:
    Fundamental concepts and simulations,” Magnetic Resonance in Medicine, vol. 52,
    pp. 1110-1117, Nov. 2004.
    [36] J. W. Boardman, F. A. Kruse, and R. O. Green, “Mapping
    target signatures via partial unmixing of AVIRIS data,”
    in Proc. Summ. JPL Airborne Earth Sci. Workshop, Pasadena, CA, Dec. 9-14,
    1995, pp. 23-26.
    [37] J.M. P. Nascimento and J. M. B. Dias, “Vertex component analysis: A fast algorithm
    to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp.
    898-910, Apr. 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE