研究生: |
顏瀚廷 Yen, Han-Ting |
---|---|
論文名稱: |
新穎錫錳鎳氧化物靶材及薄膜製作 Target Preparation and Thin Film Deposition of Novel Sn-Mn-Ni Based Oxide |
指導教授: |
游萃蓉
Yew, Tri-Rung |
口試委員: |
李紫原
Lee, Chi Young 盧明昌 Lu, Ming Chan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 錫 、錳 、鎳 、氧化物 、光電半導體 |
外文關鍵詞: | Sn, Mn, Ni, Oxide, Optoelectronic semiconductor |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究藉由合成無毒、對環境友善之錫錳鎳多元氧化物靶材,並利用電子束蒸鍍及射頻磁控濺度系統成長新穎錫錳鎳多元氧化物薄膜,且經由後續光性及電性等分析及趨勢探討,尋找可用於光電半導體元件之材料。最後,嘗試驗證薄膜作為太陽能吸收層之可行性。
本研究主要利用兩種方法成長新穎 Sn-Mn-Ni 多元氧化物薄膜。第一種為以電子束蒸鍍成長薄膜,且藉由田口法實驗設計中調整生胚的成份比例、薄膜退火溫度及薄膜退火環境三種變因並搭配 X 光能量散佈儀、紫外/可見光吸收光光譜儀、霍爾效應量測儀等鑑定薄膜特性來找出影響薄膜吸光率、載子濃度及電阻率的變因趨勢。
而後選擇於可見光波段吸收率最高之薄膜依照其薄膜元素成份比例製成靶材,並利用第二種薄膜成長方法,射頻磁控濺度系統成長薄膜。藉由調變濺鍍氧分壓、濺鍍基板溫度及後續不同薄膜退火溫度及環境且再次搭配以上儀器來找出影響薄膜吸光率、載子濃度及電阻率的變因趨勢。最後得到的結論為薄膜載子濃度將隨著提升濺鍍氧分壓而增加,但又隨著基板溫度提升至高溫而降低;電阻率則是隨著提升基板溫度而上升。而退火溫度及環境的改變與薄膜載子濃度及電阻率並無明顯直接關係,但薄膜只要在退火後,其透光度皆較退火前高。
因此,本研究選擇以濺鍍成長後吸光率最高 (Absorption % ~ 85 %) 之 n-type 薄膜,搭配同樣是以濺鍍成長之 p-type 薄膜組成同質 p-n 接面太陽能電池,並以此元件初步驗證 Sn-Mn-Ni 多元氧化物薄膜作為光電元件之可行性。
In this work, novel, stable and environmentally friendly Sn-Mn-Ni based oxide targets were prepared and their thin films were deposited by e-beam evaporation and RF sputtering. After that, feasibilities for optoelectronic applications were discussed.
E-beam evaporation was used to deposit thin films in the beginning. Taguchi method was an experiment design tried to find out three factors, portion of element in green compact, post annealing temperature and post annealing environment, which was the most effective factor to dominate the electro-optical characteristics of thin film. The absorption coefficient, carrier concentration, resistivity and crystal structure of thin films were confirmed by UV-Vis, Hall effect measurement and X-ray diffractometer (XRD). After that, the relationships between compositions and properties were discussed.
The composition of thin film deposited by e-beam evaporation with highest light absorption in visible region was selected to prepare the target. Partial pressure of oxygen and substrate temperature in sputtering process, post annealing temperature and post annealing environment were four factors chosen to investigate the trends of absorption, carrier concentration and resistivity of thin film. The results showed carrier concentration had positive correlation with the partial pressure of oxygen in deposition and thin films become more transparent after annealing.
After that, p-n homo-junction Sn-Mn-Ni oxide solar cells were fabricated. The results revealed a suspected p-n junction which preliminary provided the feasibility of photovoltaic applications of Sn-Mn-Ni based oxide thin film in this study.
1. Fung, C.-P.; Kang, P.-C., Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis. Journal of Materials Processing Technology 2005, 170 (3), 602-610.
2. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar cell efficiency tables (Version 45). Progress in Photovoltaics: Research and Applications 2015, 23 (1), 1-9.
3. Shabbir, A. B., Study of Indium Tin Oxide (ITO) for Novel Optoelectronic Devices. King’s College, London 1998.
4. Minami, T.; Nishi, Y.; Miyata, T., High-Efficiency Cu2O-Based Heterojunction Solar Cells Fabricated Using a Ga2O3Thin Film as N-Type Layer. Applied Physics Express 2013, 6 (4), 044101.
5. (a) Chowdhury, F. I.; Blaine, T.; Gougam, A. B., Optical transmission enhancement of fluorine doped tin oxide (FTO) on glass for thin film photovoltaic applications. Energy Procedia 2013, 42, 660-669; (b) Kim, H.-J.; Lee, M.-S.; Lee, D.-G.; Son, M.-K.; Lee, K.-J., Optimal ablation of fluorine-doped tin oxide (FTO) thin film layers adopting a simple pulsed Nd: YAG laser with TEM 00 mode. Optics and Lasers in Engineering 2009, 47 (5), 558-562.
6. Kim, H.; Gilmore, C. M.; Horwitz, J. S.; Piqué, A.; Murata, H.; Kushto, G. P.; Schlaf, R.; Kafafi, Z. H.; Chrisey, D. B., Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Applied Physics Letters 2000, 76 (3), 259.
7. Andersson, A.; Johansson, N.; Yu, N.; Lupo, D.; Salaneck, W. R., Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs.
8. (a) Walsh, N., Passivation of Amorphous Indium-Gallium-Zinc Oxide (IGZO) Thin-Film Transistors. 2014; (b) Socratous, J.; Banger, K. K.; Vaynzof, Y.; Sadhanala, A.; Brown, A. D.; Sepe, A.; Steiner, U.; Sirringhaus, H., Electronic Structure of Low-Temperature Solution-Processed Amorphous Metal Oxide Semiconductors for Thin-Film Transistor Applications. Advanced functional materials 2015, 25 (12), 1873-1885; (c) Banger, K. K.; Peterson, R. L.; Mori, K.; Yamashita, Y.; Leedham, T.; Sirringhaus, H., High Performance, Low Temperature Solution-Processed Barium and Strontium Doped Oxide Thin Film Transistors. Chemistry of materials : a publication of the American Chemical Society 2014, 26 (2), 1195-1203.
9. Yeh, J. W.; Chen, Y. L.; Lin, S. J.; Chen, S. K., High-Entropy Alloys – A New Era of Exploitation. Materials Science Forum 2007, 560, 1-9.
10. (a) Cox, J.; Wagman, D. D.; Medvedev, V. A., CODATA key values for thermodynamics. Chem/Mats-Sci/E: 1989; (b) Wagman, D. D.; Evans, W. H.; Parker, V. B.; Schumm, R. H.; Halow, I.; Bailey, S. M.; Churney, K. L.; Nuttall, R. L., Erratum: The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units [J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982)]. Journal of physical and chemical reference data 1989, 18 (4), 1807-1812.
11. Stevenson, A., Thermal vibrations and bonding in GaAs: an extended-face crystal study. Acta Crystallographica Section A: Foundations of Crystallography 1994, 50 (5), 621-632.
12. Campos, C.; Ersching, K.; De Lima, J.; Grandi, T.; Höhn, H.; Pizani, P., Influence of minor oxidation of the precursor powders to form nanocrystalline CdTe by mechanical alloying. Journal of Alloys and Compounds 2008, 466 (1), 80-86.
13. Roy, S.; Guha, P.; Kundu, S.; Hanzawa, H.; Chaudhuri, S.; Pal, A., Characterization of Cu (In, Ga) Se 2 films by Raman scattering. Materials chemistry and physics 2002, 73 (1), 24-30.
14. Chen, S.; Gong, X.; Walsh, A.; Wei, S.-H., Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Applied Physics Letters 2010, 96 (2), 021902.
15. Chiang, Y.-M.; Kingery, W. D.; Birnie, D. P., Physical ceramics: principles for ceramic science and engineering. J. Wiley: 1997.
16. German, R. M., Sintering theory and practice. Sintering Theory and Practice, by Randall M. German, pp. 568. ISBN 0-471-05786-X. Wiley-VCH, January 1996. 1996, 1.
17. 汪建民, 材料分析. 中國材料科學學會發行: 1998.
18. (a) Chun, W.-J.; Ishikawa, A.; Fujisawa, H.; Takata, T.; Kondo, J. N.; Hara, M.; Kawai, M.; Matsumoto, Y.; Domen, K., Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. The Journal of Physical Chemistry B 2003, 107 (8), 1798-1803; (b) Trasatti, S., The absolute electrode potential: an explanatory note (Recommendations 1986). Pure and Applied Chemistry 1986, 58 (7), 955-966.
19. Huang, C.; Zhang, G.; Chen, Z.; Huang, X.; Shen, H., Calculation of the absorption coefficients of optical materials by measuring the transmissivities and refractive indices. Optics & Laser Technology 2002, 34 (3), 209-211.
20. Sun, S.; Meng, G.; Zhang, M.; An, X.; Wu, G.; Zhang, L., Synthesis of SnO2 nanostructures by carbothermal reduction of SnO2 powder. Journal of Physics D: Applied Physics 2004, 37 (3), 409.
21. Kim, K.-S.; Park, S.-J., Synthesis and high electrochemical performance of polyaniline/MnO2-coated multi-walled carbon nanotube-based hybrid electrodes. Journal of Solid State Electrochemistry 2012, 16 (8), 2751-2758.
22. Revie, R. W., Corrosion and corrosion control. John Wiley & Sons: 2008.
23. Schroder, D. K., Semiconductor material and device characterization. John Wiley & Sons: 2006.
24. Barrett, C.; Evans, E., Solid Solubility and Lattice Parameter of NiO‐MnO. Journal of the American Ceramic Society 1964, 47 (10), 533-533.
25. Baur, W. H.; Khan, A. A., Rutile-type compounds. IV. SiO2, GeO2 and a comparison with other rutile-type structures. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 1971, 27 (11), 2133-2139.
26. Porta, P.; Minelli, G.; Botto, I.; Baran, E., Structural, magnetic, and optical investigation of Ni 6 MnO 8. Journal of Solid State Chemistry 1991, 92 (1), 202-207.