研究生: |
廖哲偉 Liao, Che-Wei |
---|---|
論文名稱: |
針對不規則低密度奇偶檢查碼之高吞吐量解碼器架構 A high-throughput decoder architecture for irregular LDPC codes |
指導教授: |
翁詠祿
Ueng, Yeong-Luh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 49 |
中文關鍵詞: | 低密度奇偶檢查碼 、解碼器 、全球互通微波存取 |
外文關鍵詞: | LDPC, throughput, WiMAX |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無線通訊技術正在改變人類的生活型態,在未來可移動式全球互通微波存取系統,因為其寬頻且可攜式的特性,幾乎可取代今日ADSL加Wi-Fi的網路接取模式。尤其在無線傳輸下,通道編碼為一必要之過程。在的規格書IEEE 802.16e版本中,低密度奇偶檢查碼(Low Density Parity Check Codes, 以下簡稱LDPC碼)即為其中的規範之一種類。由於低密度奇偶檢查碼有很好的抗衰落性,編碼增益很高,接收機在較低的信噪比情況下仍然可以擁有較低的誤碼率,可以使覆蓋範圍得到提升。
由於低密度奇偶檢查碼有很好的錯誤更正效能,改良後的解碼方式有低複雜度特性,而且可具有高的吞吐量(throughput),因此許多下一代的通道編碼技術紛紛採用低密度奇偶檢查碼,如無線網路(IEEE 802.11n)、無線都會區域網路(IEEE 802.16e)、銅線百億位元乙太網路標準(IEEE 802.2an)與數位視訊廣播衛星標準(DVB-S2)。低密度奇偶檢查碼的錯誤更正效能與疊代(iteration)次數成正比,所以在雜訊較高的通道傳輸時,就需要較多的疊代次數,因此疊代次數就成為低密度奇偶檢查碼效能的關鍵。
在本論文中,我們提出了一個具有高吞吐量的低密度奇偶檢查碼解碼架構,此設計可適用於可移動式全球互通微波存取系統上。以縱向混合解碼演算法進行解碼運算為基礎,採用了一個重新安排的解碼流程來加快解碼收斂的速度。由元件可程式邏輯閘陣列進行了實體的驗證,並經由90奈米的製程技術,實現了晶片佈局。在固定 6次遞迴解碼的情況下,可以達到最高的傳輸速率為每秒746百萬位元,其功率消耗為90mW。
In this thesis, we propose a high-throughput low-density
parity-check (LDPC) decoder architecture, which is compatible with
mobile WiMAX system. Based on vertical shuffled scheduling, we
proposed a scheduling method to arrange decoding sequence. The
architecture is verified by FPGA system board. Moreover, 90nm
technology is used to implement the physical layout. Under 6
decoding iterations, the decoder can achieve highest 746Mb/s, and
the power consumption is 90mW.
[1] R. Gallager, ”Low-density parity-check Codes,” IRE Trans. Inf. Theory,
vol. 7, pp. 21-28, Jan. 1962.
[2] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inform. Theory, vol. IT-27, pp. 533-547, Sep. 1981.
[3] D. Mackay, “Good error-correcting codes based on very sparse matrices,”
IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399-431, Mar. 1999.
[4] http://www.wimaxforum.org/
[5] http://en.wikipedia.org/wiki/Wimax
[6] Part 16: Air interface for fixed and mobile broadband wireless access sys-
tems amendment for physical and medium access control layers for com-
bined fixed and mobile operation in licensed bands, IEEE P802.16e-2005,
2005.
[7] M. Fossorier, M. Mihaljevic, and H. Imai, ”Reduced complexity iterative
decoding of low-density parity check codes based on belief propagation”,
IEEE Trans. Commum., vol. 47, pp. 673-680, May 1999.
[8] J. Chen and M. Fossorier, ”Density evolution for two improved BP-
based decoding algorithms of LDPC codes,” IEEE Commum. Lett., vol. 6,
pp. 208-210, May 2002.
[9] H. Zhong and T. Zhang; ”Block-LDPC: A Practical LDPC Coding System
Design Approach,” IEEE Transactions on Circuit and Systems–I: regular
papers, Vol. 52, No. 4, pp.766-775 , April 2005
[10] S. Lin and D. J. Costello, Jr., Error Control Coding. Pearson Prentice-
Hall, 2nd ed. 2004
[11] Juntan Zhang, M.P.C Fossorier, “Shuffled Iterative Decoding,” IEEE
Trans. Communications. Theory, vol. 53, no. 6, pp. 209-213, Feb. 2005.
[12] Y. L.Ueng, C. J. Yang and C. J. Chen, ”A shuffled message-passing de-
coding method for memory-based LDPC decoders,” ISCAS, 2009.
[13] M. M. Mansour and N. R. Shanbhag, ”High-throughput LDPC decoders,”
IEEE Trans. VLSI System, vol. 11, no. 6, pp. 976-996, Dec. 2003.
[14] Wen Ji, Abe, Y., Ikenaga, T., Goto, S., ”A high performance LDPC
decoder for IEEE802.11n standard”, IEEE ASP-DAC, Pp. 127-128, Apr.
2009
[15] Jui-Hui Hung, Sau-Gee Chen, ”A 1.45Gb/s (576,288) LDPC Decoder for
802.16e standard”, IEEE Signal Processing and Information Technology,
Pp. 916-921, Dec. 2007