研究生: |
林育民 Lin, Yu-Min |
---|---|
論文名稱: |
抗菌胜肽/蛋白質對綠膿桿菌抗菌活性之研究 A study in the bactericidal activity of antimicrobial peptide/protein against Pseudomonas aeruginosa |
指導教授: |
張大慈
Chang, Margaret Dah-Tsyr 廖有地 Liao, You-Di |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 76 |
中文關鍵詞: | 人類第七號核醣核酸水解酵素 、綠膿桿菌 、脂蛋白質 、抗菌胜肽蛋白質 |
外文關鍵詞: | human RNase7, P. aeruginosa, Antimicrobial peptides/proteins, outer membrane protein I |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Antimicrobial peptides/proteins (AMPs) are widely distributed in nature with vast diversity. Most AMPs share a common feature of an amphipathic structure where clusters of hydrophobic and cationic amino acids are spatially organized into discrete sectors. Ribonucleases (RNases) are abundant in living organisms and play important roles in RNA metabolism, angiogenesis, neurotoxicity, antitumor and antimicrobial activities, among which antimicrobial RNases possess high positively charged residues. To investigate the role of cationic residues of human RNase7 (hRNase7) in its antimicrobial activities against bacteria and yeast, nuclear magnetic resonance (NMR) spectroscopy and site-directed mutagenesis have been carried out. It is found that 22 positively charged residues (18 Lys and 4 Arg) of hRNase 7 exposed to the surface can be classified into three clusters, and the first cluster containing Lys1, Lys3, Lys111, Lys112 located at a flexible coil near the N terminus, rather than the catalytic residues His15, Lys38, and His123 or other two clusters, Lys32, Lys35 and Lys96, Arg97, Lys100, is critical. For most Gram-negative bacteria, the cell surface lipopolysaccharide (LPS) serves as the major target for AMPs. However, the antimicrobial activities of hRNase 7 and α-helical cationic AMPs against P. aeruginosa, a lethal pathogen to immune-compromised hospitalized patients with low antibiotic susceptibility, can be inhibited by the addition of exogenous OprI (outer membrane protein I) or anti-OprI antibody. The modification and internalization of OprI into cytosol triggered by hRNase 7 make bacterial membrane permeable to intracellular components of P. aeruginosa. Our findings highlight a novel mechanism of antimicrobial activity. This is the first report demonstrating a previously unexplored cell surface target of α-helical cationic AMPs rather than LPS, which may be used for screening drugs to treat antibiotic-resistant bacterial infection.
1. Steiner, H., D. Hultmark, A. Engstrom, H. Bennich, and H. G. Boman. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246-248.
2. Zasloff, M. 1987. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proceedings of the National Academy of Sciences of the United States of America 84:5449-5453.
3. Bechinger, B., M. Zasloff, and S. J. Opella. 1993. Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci 2:2077-2084.
4. Selsted, M. E., D. M. Brown, R. J. DeLange, S. S. Harwig, and R. I. Lehrer. 1985. Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. The Journal of biological chemistry 260:4579-4584.
5. Romeo, D., B. Skerlavaj, M. Bolognesi, and R. Gennaro. 1988. Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. The Journal of biological chemistry 263:9573-9575.
6. Agerberth, B., J. Y. Lee, T. Bergman, M. Carlquist, H. G. Boman, V. Mutt, and H. Jornvall. 1991. Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. European journal of biochemistry / FEBS 202:849-854.
7. Selsted, M. E., M. J. Novotny, W. L. Morris, Y. Q. Tang, W. Smith, and J. S. Cullor. 1992. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. The Journal of biological chemistry 267:4292-4295.
8. Montville, T. J., and Y. Chen. 1998. Mechanistic action of pediocin and nisin: recent progress and unresolved questions. Applied microbiology and biotechnology 50:511-519.
9. Kim, H. S., H. Yoon, I. Minn, C. B. Park, W. T. Lee, M. Zasloff, and S. C. Kim. 2000. Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I. J Immunol 165:3268-3274.
10. Ulvatne, H., and L. H. Vorland. 2001. Bactericidal kinetics of 3 lactoferricins against Staphylococcus aureus and Escherichia coli. Scandinavian journal of infectious diseases 33:507-511.
11. Hancock, R. E., and G. Diamond. 2000. The role of cationic antimicrobial peptides in innate host defences. Trends in microbiology 8:402-410.
12. Yang, D., A. Biragyn, D. M. Hoover, J. Lubkowski, and J. J. Oppenheim. 2004. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annual review of immunology 22:181-215.
13. Davidson, D. J., A. J. Currie, G. S. Reid, D. M. Bowdish, K. L. MacDonald, R. C. Ma, R. E. Hancock, and D. P. Speert. 2004. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 172:1146-1156.
14. Braff, M. H., M. A. Hawkins, A. Di Nardo, B. Lopez-Garcia, M. D. Howell, C. Wong, K. Lin, J. E. Streib, R. Dorschner, D. Y. Leung, and R. L. Gallo. 2005. Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities. J Immunol 174:4271-4278.
15. Yang, L., T. A. Harroun, T. M. Weiss, L. Ding, and H. W. Huang. 2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophysical journal 81:1475-1485.
16. Pouny, Y., D. Rapaport, A. Mor, P. Nicolas, and Y. Shai. 1992. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31:12416-12423.
17. Matsuzaki, K., O. Murase, N. Fujii, and K. Miyajima. 1996. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35:11361-11368.
18. Yang, L., T. A. Harroun, W. T. Heller, T. M. Weiss, and H. W. Huang. 1998. Neutron off-plane scattering of aligned membranes. I. Method Of measurement. Biophysical journal 75:641-645.
19. Yamaguchi, S., T. Hong, A. Waring, R. I. Lehrer, and M. Hong. 2002. Solid-state NMR investigations of peptide-lipid interaction and orientation of a beta-sheet antimicrobial peptide, protegrin. Biochemistry 41:9852-9862.
20. Henzler Wildman, K. A., D. K. Lee, and A. Ramamoorthy. 2003. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry 42:6545-6558.
21. Boman, H. G., B. Agerberth, and A. Boman. 1993. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infection and immunity 61:2978-2984.
22. Subbalakshmi, C., and N. Sitaram. 1998. Mechanism of antimicrobial action of indolicidin. FEMS microbiology letters 160:91-96.
23. Dubois, J. Y., B. M. Ursing, J. A. Kolkman, and J. J. Beintema. 2003. Molecular evolution of mammalian ribonucleases 1. Molecular phylogenetics and evolution 27:453-463.
24. Dyer, K. D., and H. F. Rosenberg. 2006. The RNase a superfamily: generation of diversity and innate host defense. Molecular diversity 10:585-597.
25. Hirs, C. H., W. H. Stein, and S. Moore. 1954. The amino acid composition of ribonuclease. The Journal of biological chemistry 211:941-950.
26. Hirs, C. H., S. Moore, and W. H. Stein. 1956. Studies on structure of ribonuclease. Federation proceedings 15:840-848.
27. Gabel, D., D. Rasse, and H. A. Scheraga. 1976. Search for low-energy conformations of a neurotoxic protein by means of predictive rules, tests for hard-sphere overlaps, and energy minimization. International journal of peptide and protein research 8:237-252.
28. Walter, B., and F. Wold. 1976. The role of lysine in the action of bovine pancreatic ribonuclease A. Biochemistry 15:304-310.
29. Kurachi, K., E. W. Davie, D. J. Strydom, J. F. Riordan, and B. L. Vallee. 1985. Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry 24:5494-5499.
30. Nitta, R., N. Katayama, Y. Okabe, M. Iwama, H. Watanabe, Y. Abe, T. Okazaki, K. Ohgi, and M. Irie. 1989. Primary structure of a ribonuclease from bullfrog (Rana catesbeiana) liver. Journal of biochemistry 106:729-735.
31. Rosenberg, H. F., D. G. Tenen, and S. J. Ackerman. 1989. Molecular cloning of the human eosinophil-derived neurotoxin: a member of the ribonuclease gene family. Proceedings of the National Academy of Sciences of the United States of America 86:4460-4464.
32. Durack, D. T., S. J. Ackerman, D. A. Loegering, and G. J. Gleich. 1981. Purification of human eosinophil-derived neurotoxin. Proceedings of the National Academy of Sciences of the United States of America 78:5165-5169.
33. Yang, D., Q. Chen, H. F. Rosenberg, S. M. Rybak, D. L. Newton, Z. Y. Wang, Q. Fu, V. T. Tchernev, M. Wang, B. Schweitzer, S. F. Kingsmore, D. D. Patel, J. J. Oppenheim, and O. M. Howard. 2004. Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol 173:6134-6142.
34. Yang, D., Q. Chen, S. B. Su, P. Zhang, K. Kurosaka, R. R. Caspi, S. M. Michalek, H. F. Rosenberg, N. Zhang, and J. J. Oppenheim. 2008. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. The Journal of experimental medicine 205:79-90.
35. Lehrer, R. I., D. Szklarek, A. Barton, T. Ganz, K. J. Hamann, and G. J. Gleich. 1989. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol 142:4428-4434.
36. Tello-Montoliu, A., J. V. Patel, and G. Y. Lip. 2006. Angiogenin: a review of the pathophysiology and potential clinical applications. J Thromb Haemost 4:1864-1874.
37. Rosenberg, H. F. 2008. RNase A ribonucleases and host defense: an evolving story. Journal of leukocyte biology 83:1079-1087.
38. Liao, Y. D., H. C. Huang, Y. J. Leu, C. W. Wei, P. C. Tang, and S. C. Wang. 2000. Purification and cloning of cytotoxic ribonucleases from Rana catesbeiana (bullfrog). Nucleic acids research 28:4097-4104.
39. Hooper, L. V., T. S. Stappenbeck, C. V. Hong, and J. I. Gordon. 2003. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nature immunology 4:269-273.
40. Zhang, J., K. D. Dyer, and H. F. Rosenberg. 2003. Human RNase 7: a new cationic ribonuclease of the RNase A superfamily. Nucleic acids research 31:602-607.
41. Harder, J., and J. M. Schroder. 2002. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. The Journal of biological chemistry 277:46779-46784.
42. Rudolph, B., R. Podschun, H. Sahly, S. Schubert, J. M. Schroder, and J. Harder. 2006. Identification of RNase 8 as a novel human antimicrobial protein. Antimicrobial agents and chemotherapy 50:3194-3196.
43. Holloway, D. E., M. C. Hares, R. Shapiro, V. Subramanian, and K. R. Acharya. 2001. High-level expression of three members of the murine angiogenin family in Escherichia coli and purification of the recombinant proteins. Protein expression and purification 22:307-317.
44. Nitto, T., K. D. Dyer, M. Czapiga, and H. F. Rosenberg. 2006. Evolution and function of leukocyte RNase A ribonucleases of the avian species, Gallus gallus. The Journal of biological chemistry 281:25622-25634.
45. Huang, Y. C., Y. M. Lin, T. W. Chang, S. J. Wu, Y. S. Lee, M. D. Chang, C. Chen, S. H. Wu, and Y. D. Liao. 2007. The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity. The Journal of biological chemistry. 4626-4633.
46. Hsu, C. H., Y. D. Liao, Y. R. Pan, L. W. Chen, S. H. Wu, Y. J. Leu, and C. Chen. 2003. Solution structure of the cytotoxic RNase 4 from oocytes of bullfrog Rana catesbeiana. Journal of molecular biology 326:1189-1201.
47. Huang, H. C., S. C. Wang, Y. J. Leu, S. C. Lu, and Y. D. Liao. 1998. The Rana catesbeiana rcr gene encoding a cytotoxic ribonuclease. Tissue distribution, cloning, purification, cytotoxicity, and active residues for RNase activity. The Journal of biological chemistry 273:6395-6401.
48. Liao, Y. D., and J. J. Wang. 1994. Yolk granules are the major compartment for bullfrog (Rana catesbeiana) oocyte-specific ribonuclease. European journal of biochemistry / FEBS 222:215-220.
49. Nekhotiaeva, N., A. Elmquist, G. K. Rajarao, M. Hallbrink, U. Langel, and L. Good. 2004. Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides. Faseb J 18:394-396.
50. Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415:389-395.
51. Kragol, G., S. Lovas, G. Varadi, B. A. Condie, R. Hoffmann, and L. Otvos, Jr. 2001. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40:3016-3026.
52. Hancock, R. E., and A. Rozek. 2002. Role of membranes in the activities of antimicrobial cationic peptides. FEMS microbiology letters 206:143-149.
53. Powers, J. P., and R. E. Hancock. 2003. The relationship between peptide structure and antibacterial activity. Peptides 24:1681-1691.
54. Rosenberg, H. F. 1995. Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. The Journal of biological chemistry 270:7876-7881.
55. Carreras, E., E. Boix, H. F. Rosenberg, C. M. Cuchillo, and M. V. Nogues. 2003. Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein. Biochemistry 42:6636-6644.
56. Torrent, M., D. Sanchez, V. Buzon, M. V. Nogues, J. Cladera, and E. Boix. 2009. Comparison of the membrane interaction mechanism of two antimicrobial RNases: RNase 3/ECP and RNase 7. Biochimica et biophysica acta 1788:1116-1125.
57. Lundberg, P., and U. Langel. 2003. A brief introduction to cell-penetrating peptides. J Mol Recognit 16:227-233.
58. Brogden, K. A. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature reviews 3:238-250.
59. Giamarellou, H. 2002. Prescribing guidelines for severe Pseudomonas infections. The Journal of antimicrobial chemotherapy 49:229-233.
60. Poole, K. 2004. Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect 10:12-26.
61. Hancock, R. E., and A. Patrzykat. 2002. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Current drug targets 2:79-83.
62. Brown, K. L., and R. E. Hancock. 2006. Cationic host defense (antimicrobial) peptides. Current opinion in immunology 18:24-30.
63. Schroder, J. M., and J. Harder. 2006. Antimicrobial skin peptides and proteins. Cell Mol Life Sci 63:469-486.
64. Glaser, R., J. Harder, H. Lange, J. Bartels, E. Christophers, and J. M. Schroder. 2005. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nature immunology 6:57-64.
65. Skerlavaj, B., M. Benincasa, A. Risso, M. Zanetti, and R. Gennaro. 1999. SMAP-29: a potent antibacterial and antifungal peptide from sheep leukocytes. FEBS letters 463:58-62.
66. Brogden, K. A., V. C. Kalfa, M. R. Ackermann, D. E. Palmquist, P. B. McCray, Jr., and B. F. Tack. 2001. The ovine cathelicidin SMAP29 kills ovine respiratory pathogens in vitro and in an ovine model of pulmonary infection. Antimicrobial agents and chemotherapy 45:331-334.
67. Epand, R. M., and H. J. Vogel. 1999. Diversity of antimicrobial peptides and their mechanisms of action. Biochimica et biophysica acta 1462:11-28.
68. Hancock, R. E., T. Falla, and M. Brown. 1995. Cationic bactericidal peptides. Advances in microbial physiology 37:135-175.
69. Duchene, M., C. Barron, A. Schweizer, B. U. von Specht, and H. Domdey. 1989. Pseudomonas aeruginosa outer membrane lipoprotein I gene: molecular cloning, sequence, and expression in Escherichia coli. Journal of bacteriology 171:4130-4137.
70. Mizuno, T., and M. Kageyama. 1979. Isolation and characterization of major outer membrane proteins of Pseudomonas aeruginosa strain PAO with special reference to peptidoglycan-associated protein. Journal of biochemistry 86:979-989.
71. Yang, C. W., S. I. Hung, C. G. Juo, Y. P. Lin, W. H. Fang, I. H. Lu, S. T. Chen, and Y. T. Chen. 2007. HLA-B*1502-bound peptides: implications for the pathogenesis of carbamazepine-induced Stevens-Johnson syndrome. J Allergy Clin Immunol 120:870-877.
72. Rocchetta, H. L., and J. S. Lam. 1997. Identification and functional characterization of an ABC transport system involved in polysaccharide export of A-band lipopolysaccharide in Pseudomonas aeruginosa. Journal of bacteriology 179:4713-4724.
73. Macias, E. A., F. Rana, J. Blazyk, and M. C. Modrzakowski. 1990. Bactericidal activity of magainin 2: use of lipopolysaccharide mutants. Canadian journal of microbiology 36:582-584.
74. Rana, F. R., C. M. Sultany, and J. Blazyk. 1990. Interactions between Salmonella typhimurium lipopolysaccharide and the antimicrobial peptide, magainin 2 amide. FEBS letters 261:464-467.
75. De Lucca, A. J., T. J. Jacks, and K. A. Brogden. 1995. Binding between lipopolysaccharide and cecropin A. Molecular and cellular biochemistry 151:141-148.
76. Srimal, S., N. Surolia, S. Balasubramanian, and A. Surolia. 1996. Titration calorimetric studies to elucidate the specificity of the interactions of polymyxin B with lipopolysaccharides and lipid A. The Biochemical journal 315:679-686.
77. Mizuno, T., and M. Kageyama. 1979. Isolation of characterization of a major outer membrane protein of Pseudomonas aeruginosa. Evidence for the occurrence of a lipoprotein. Journal of biochemistry 85:115-122.
78. Inouye, M., J. Shaw, and C. Shen. 1972. The assembly of a structural lipoprotein in the envelope of Escherichia coli. The Journal of biological chemistry 247:8154-8159.
79. Braun, V. 1975. Covalent lipoprotein from the outer membrane of Escherichia coli. Biochimica et biophysica acta 415:335-377.
80. Fung, J., T. J. MacAlister, and L. I. Rothfield. 1978. Role of murein lipoprotein in morphogenesis of the bacterial division septum: phenotypic similarity of lkyD and lpo mutants. Journal of bacteriology 133:1467-1471.
81. Geourjon, C., and G. Deleage. 1995. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681-684.
82. Lupas, A., M. Van Dyke, and J. Stock. 1991. Predicting coiled coils from protein sequences. Science 252:1162-1164.
83. Shu, W., J. Liu, H. Ji, and M. Lu. 2000. Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 A resolution. Journal of molecular biology 299:1101-1112.
84. Peterson, A. A., S. W. Fesik, and E. J. McGroarty. 1987. Decreased binding of antibiotics to lipopolysaccharides from polymyxin-resistant strains of Escherichia coli and Salmonella typhimurium. Antimicrobial agents and chemotherapy 31:230-237.
85. Falla, T. J., D. N. Karunaratne, and R. E. Hancock. 1996. Mode of action of the antimicrobial peptide indolicidin. The Journal of biological chemistry 271:19298-19303.
86. Steinberg, D. A., M. A. Hurst, C. A. Fujii, A. H. Kung, J. F. Ho, F. C. Cheng, D. J. Loury, and J. C. Fiddes. 1997. Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrobial agents and chemotherapy 41:1738-1742.
87. Travis, S. M., N. N. Anderson, W. R. Forsyth, C. Espiritu, B. D. Conway, E. P. Greenberg, P. B. McCray, Jr., R. I. Lehrer, M. J. Welsh, and B. F. Tack. 2000. Bactericidal activity of mammalian cathelicidin-derived peptides. Infection and immunity 68:2748-2755.
88. Merritt, E. A., and M. E. Murphy. 1994. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta crystallographica 50:869-873.
89. Nicholls, A., K. A. Sharp, and B. Honig. 1991. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11:281-296.