研究生: |
魏明財 Wey, Ming-Tsai |
---|---|
論文名稱: |
The studies of structure and physical properties of DNA triplex with a tight-turn on sugar-phosphate backbone and with imperfect base-triads 緊彎DNA三螺旋與不完整配對DNA三螺旋的結構和物理性質研究 |
指導教授: |
呂平江
Lyu, Ping Chiang 甘魯生 Kan, Lou-Sing |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 160 |
中文關鍵詞: | 緊彎DNA三螺旋 、不完整配對DNA三螺旋 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Triple-stranded nucleic acid helix is well recognized since its discovery in 1957. Ever since, there has been growing interest in DNA triplexes due to their potential roles in diagnostics and/or therapeutics as antigenes. DNA triplex formation is known to involve loops which are stabilized by the base pairs contained within, similar to the case of double helixes. However, we have found novel stable DNA triplexes formed by folding the chains without loops, i.e., in a tight-turn structure. It is the aim of this thesis to study the formation and the physical properties of this particular kind of triple DNAs. Chapters 2, 3, and 4 of this dissertation contain: structural elucidation of tight-turn triplexes by nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulation; formation confirmation by native gel electrophoresis, ultraviolet (UV) thermal melting curve and circular dichroism (CD) spectroscopy; and determination of association constant (Ka) and thermodynamic parameters (ΔH, ΔS, and ΔG) by fluorescence resonance energy transfer (FRET). The structure and shape of the tight-turn triplex can be observed directly at the single molecular level with atomic force microscopy (AFM). Chapter 5 describes the discovery of an imperfect but stable tri-molecular triplex containing two non-pyrimidine/purine/pyrimidine base triads in the middle. Native gel electrophoresis, UV absorption, and CD spectroscopy were used to monitor the formation reaction, at each stage, of the imperfect triplex; isothermal titration calorimetry (ITC) and surface Plasmon resonance (SPR) were used to acquire thermodynamic and kinetic information, respectively.
References
1. Gilbert, D. E., and Feigon, J. Curr. Opin. Struct. Biol. 1999, 9, 305–314.
2. Felsenfeld, G., Davies, D. R., and Rich, A. J. Am. Chem. Soc. 1957, 79, 2023–2024.
3. Frank-Kamenetskii, M. D., and Mirkin, S. M. Annu. Rev. Biochem.1995, 64, 65–95.
4. Callahan, D. E., Trapane, T. L., Miller, P. S., Ts’o, P. O. P., and Kan, L. S. Biochemistry 1991, 30, 1650–1655.
5. Kan, L. S., Callahan, D. E., Trapane, T. L., Miller, P. S., Ts’o, P. O. P., and Huang, D. H. J. Biomol. Struct. Dyn. 1991, 8, 911–933.
6. Ono, A., Chen, C. N., and Kan, L. S. Biochemistry 1991, 30, 9914–9921.
7. Lin, S. B., Kao, C. F., Lee, S. C., and Kan, L. S. Anticancer Drug Des. 1994, 9, 1–8.
8. Ono, A., and Kan, L. S. J. Chin. Chem. Soc. 1994, 41, 857–864.
9. Kan, L. S., and Ono, A. J. Chin. Chem. Soc. 1994, 41, 865–869.
10. Trapane, T. L., Hogrefe, R. I., Reynold, M. A., Kan, L. S., and Ts’o, P. O. P. Biochemistry 1996, 35, 5495–5508.
11. Wei, M. T., Walter, A., Gabrielian, A., Schu‥ tz, H., Birch-Hirschfeld, E., Lin, S. B., Lin, W. C., Fritzsche, H., and Kan, L. S. J. Chin. Chem. Soc. 2005, 52, 375–381.
12. Besch, R., Giovannangeli, C., Schuh, T., Kammerbauer, C., and Degitz, K. J. Mol. Biol. 2004, 341, 979–989.
13. Barre, F. X., Ait-Si-Ali, S., Giovannangeli, C., Luis, R., Robin, P., Pritchard, L. I., Helene, C., and Harel-Bellan, A. Proc. Natl. Acad. Sci. USA. 2000, 97, 3084–3088.
14. Carbone, G. M., Napoli, S., Valentini, A., Cavalli, F., Watson, D. K., and Catapano, C. V. Nucleic Acids Res. 2004, 32, 4358–4367.
15. Catapano, C. V., McGuffie, E. M., Pacheco, D., and Carbone, G. M. R. Biochemistry 2000, 39, 5126–5138.
16. Faria, M., Wood, C. D., Perrouault, L., Nelson, J. S., Winter, A., White, M. R. H., Helene, C., and Giovannangeli, C. Proc. Natl. Acad. Sci. USA. 2000, 97, 3862–3867.
17. Giovannangeli, C., Diviacco, S., Labrousse, V., Gryaznov, S., Charneau, P., and Helene, C. Proc. Natl. Acad. Sci. USA. 1997, 94, 79–84.
18. Luo, T., Macris, M. A., Faruqi, F., and Glazer, P. M. Proc. Natl. Acad. Sci. USA. 2000, 97, 9003–9008.
19. Reynolds, M. A., Arnold Jr., L. J., Almazan, M. T., Beck, T. A., Hogrefe, R. I., Metzler, M. D., Stoughton, S. R., Tseng, B. Y., Trapane, T. L., T-so, P. O. P., and Woolf, T. M. Proc. Natl. Acad. Sci. USA. 1994, 91, 12433–12437.
20. Song, J., Intody, Z., Li, M., and Wilson, J. H. Gene. 2004, 324, 183–190.
21. Casey, B. P., and Glazer, P. M. Prog. Nucleic Acid Res. Mol. Biol. 2001, 67, 163–192.
22. Knauert, M. P., and Glazer, P. M. Hum. Mol. Genet. 2001, 10, 2243–2251.
23. Seidman, M. M., and Glazer, P. M. J. Clin. Invest. 2003, 112, 487–494.
24. Pasternack, L. B., Lin, S. B., Chin, T. M., Lin, W. C., Huang, D. H., and Kan, L. S. Biophys. J. 2002, 82, 3170–3180.
25. Chin, T. M., Lin, S. B., Lee, S. Y., Chang, M. L., Cheng, A. Y. Y., Chang, F. C., Pasternack, L., Huang, D. H., and Kan, L. S. Biochemistry 2000, 39, 12457–12464.
26. Rajagopal, P., and Feigon, J. Biochemistry 1989, 28, 7859–7870.
27. Macaya, R., Wang, E., Schultze, P., Sklenar, V., and Feigon, J. J. Mol. Biol. 1992, 225, 755–773.
28. de los Santos, C., Rosen, M., and Patel, D. Biochemistry 1989, 28, 7282–7289.
29. Warmlander, S., Sandstrom, K., Leijon, M., and Graslund, A. Biochemistry 2003, 42, 12589–12595.
30. Koshlap, K. M., Schultze, P., Brunar, P. B., Dervan, P. B., and Feigon, J. Biochemistry 1997, 36, 2659–2668.
31. Macaya, R., Wang, E., Schultze, P., Sklenar, V., and Feigon, J. J. Mol. Biol. 1992, 225, 755–773.
32. Radhakrishnan, I., de los Santon, C., and Patel, D. J. J. Mol. Biol. 1991, 221, 1403–1418.
33. Radhakrishnan, I., and Patel, D. J. J. Mol. Biol. 1994, 241, 600–619.
34. Radhakrishnan, I., and Patel, D. J. Structure 1994, 2, 17–32.
35. Tarkoy, M., Phipps, A. K., Schultz, P., and Feigon, J. Biochemistry 1998, 37, 5810–5819.
36. Wang, E., Koshlap, K. M., Gillespie, P., Dervan, P. B., and Feigon, J. J. Mol. Biol. 1996, 257, 1052–1069.
37. Mirkin, S. M., and Frank-Kamenetskii, M. D. Annu. Rev. Biophys. Biomol. Struct. 1994, 23, 541–576.
38. Kan, L. S., and Ono, A. J. Chin. Chem. Soc. 1994, 41, 865–869.
39. Tsay, L. M., Lin, S. B., Tsay, H. T., Chen, H. H., and Kan, L. S. J. Biomol. Struct. Dyn. 1995, 12, 1235–1245.
40. Radhakrishnan, I., and Patel, D. J. Biochemistry 1992, 31, 2514–2523.
41. Bornet, O., and Lancelot, G. J. Biomol. Struct. Dyn. 1995, 12, 803–814.
42. Van Duynhoven, J. P. M., Goudriaan, J., Hilbers, C. W., and Sijmenga, S. S. J. Am. Chem. Soc. 1992, 114, 10055–10056.
43. Saenger, W. Principles of Nucleic Acid Structure. Springer-Verlag, New York 1984.
44. Chin, T. M., Chang, C. M., Huang, H. W., and Lo, L. L. J. Biomol. Struct. Dyn. 2004, 22, 35–43.
45. Wang, S., and Kool, E. T. J. Am. Chem. Soc. 1994, 116, 8857–8858.
46. Kandimalla, E. R., and Agrawal, S. J. Am. Chem. Soc. 1995, 117, 6416–6417.
47. Prakash, G., and Kool, E. J. Am. Chem. Soc. 1992, 114, 3523–3527.