簡易檢索 / 詳目顯示

研究生: 趙哲新
Chao, Je-Shin
論文名稱: 以表面聲波陣列式震盪電路為基礎之氣體感測系統
Gas sensing system based on surface acoustic wave array
指導教授: 饒達仁
Yao, Da-Jeng
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 97
中文關鍵詞: 表面聲波元件陣列式震盪電路氨氣感測器氣體感測器
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於開發陣列式表面聲波量測系統,晶片材料的選擇上,本文選用高K2值之128º YX-LiNbO3 壓電基板,於其上製作指叉換能器(Interdigital Transducer, IDT),並將多種高分子聚合物塗佈修飾於延遲線(delay line)感測區之上。將做好之晶片配合製作出之震盪電路,可得感測晶片之操作頻率約為98.5MHz,在此主動式之量測機制下,再結合感測環境系統以量測特定溶劑之揮發性氣體。
    本研究朝向將感測器陣列化和微小化的方向,共分為三個步驟,第一步驟為單顆感測器之量測,此階段確定了單顆表面聲波感測器具有重覆性和可靠度;第二步驟為陣列化四頸瓶量測系統,此階段已實現非連續式陣列化表面聲波電路,透過在簡單的1L四頸瓶系統以PNVP、P4VP、PVAc、PSMA、PS、PSu、PEG七種膜對甲醇、乙醇、氨、三甲基胺、丙酮之量測,確定了陣列化的可行性,且有不錯之表現;第三步驟為陣列式微小化反應盒量測系統,此步驟進而將反應腔體縮小,以更穩定之氣體產生器提供氣體,且選擇特定標的──氨氣做量測,從PNVP、P4VP、PSMA、PCL、PVAc、PS六種膜對不同濃度之氨氣之量測,以長條圖、雷達圖做分析,可得知每種膜在不同測試條件下之反應特性,最後利用線性趨勢線作分析,可加以模擬真實情況下之反應結果。


    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 研究目標 2 第二章 文獻回顧 3 2.1 電子鼻簡介 3 2.1.1 金氧半感測器(Metal Oxide Semiconductor Sensors, MOS) 3 2.1.2 導電聚合物感測器(Conducting Polymer sensors, CPs) 4 2.1.3 金氧半場效電晶體(Metal Oxide Field Transistors, MOSFET)感測器 5 2.1.4 光感測器(Fluorescent Odor Sensors) 6 2.1.5 石英晶體微量天平(Quartz-Crystal Microbalance, QCM) 8 2.1.6 離子機動性測譜儀(Ion Mobility Spectrometry, IMS) 8 2.1.7 各種電子鼻之比較 9 2.2 表面聲波(Surface Acoustic Wave, SAW)簡介 12 2.3 陣列式表面聲波感測器 13 第三章 表面聲波基本理論及參數 16 此章將針對表面聲波感測晶片之壓電理論、指叉式電極換能器、頻率漂移效應和質量負載效應等做一詳細介紹。透過本章將對表面聲波之原理有所了解,也將能對感測晶片加以設計。 16 3.1 壓電理論 16 3.1.1 壓電材料的種類 16 3.1.2 壓電效應 17 3.2 指叉式電極換能器(IDT) 19 3.3 表面聲波元件感測原理 22 3.4 頻率飄移效應 23 3.5 質量負載效應 24 3.6 相關參數 26 3.6.1 傳遞波速 26 3.6.2 機電耦合係數(electromechanical coupling coefficient K2) 27 3.6.3 延遲溫度係數(Temperature coefficient of delay,TCD) 27 3.7 壓電基材之傳遞損失 28 3.8 scattering parameter 29 第四章 表面聲波感測元件系統設計 31 4.1 表面聲波感測晶片 31 4.1.1 基材選擇 31 4.1.2 黃光製程 33 4.2 感測薄膜製作 38 4.3 表面聲波震盪電路 41 4.3.1 正回授分析法 41 4.3.2 偏壓電路設計、模擬、製作 43 4.4 表面聲波陣列化電路 47 4.5 實驗儀器及環境架設 50 4.5.1 被動式量測 50 4.5.2 主動式量測 51 4.5.2.1 四頸瓶量測系統 51 4.5.2.2 微小化反應盒量測系統 54 4.5.2.3 10L溫度溼度量測系統 56 第五章 實驗結果 57 5.1 表面聲波感測晶片 57 5.2 溫度濕度對頻率之影響 59 5.3 表面聲波單顆電路 62 5.3.1 被動式量測 62 5.3.2 主動式量測 64 5.3.3 穩定性測試 67 5.4 表面聲波陣列化電路 68 5.4.1 四頸瓶量測系統 68 5.4.1.1 穩定性測試 68 5.4.1.2 氣體測試 69 5.4.1.3 統計分析 71 5.4.2 微小化反應盒量測系統 79 5.4.2.1 氨氣測試 79 5.4.2.2 數據分析與討論 82 第六章 結論與展望 94 第七章 參考文獻 95

    1. H. W. Shin, "Classification of the strain and growth phase of cyanobacteria in potable water using an electronic nose system", Science, Measurement and Technology, IEE Proceedings -, vol. 147(4), pp. 158-164, 2000
    2. J. W. Gardner, "An electronic nose system for monitoring the quality of potable water", Sensors and Actuators B: Chemical, vol. 69(3), pp. 336-341, 2000
    3. J. W. Gardner, "Prediction of bacteria type and culture growth phase by an electronic nose with a multi-layer perception network", Measurement Science and Technology, vol. 9, pp. 120-127, 1998
    4. J. W. Gardner, "Prediction of health of dairy cattle from breath samples using neural network with parametric model of dynamic response of array of semiconducting gas sensors", Science, Measurement and Technology, IEE Proceedings -, vol. 146(2), pp. 102-106, 1999
    5. J. W. Gardner, H. W. Shin, and E.L. Hines, "An electronic nose system to diagnose illness" Sensors and Actuators B: Chemical, vol. 70(1-3), pp. 19-24, 2000
    6. Y. J. Lin, "Application of the electronic nose for uremia diagnosis" Sensors and Actuators B: Chemical, vol. 76(1-3), pp. 177-180, 2001
    7. N. Taguchi, Patent 45-38200, 1962
    8. T. Seiyama, et al., "A new detector for gaseous components using semi-conductive thin films", Anal. Chem., vol. 34, pp. 1502-1503, 1962
    9. T. C. Pearce, et al., Handbook of Machine Olfaction: electronic nose technology, Wiley-VCH, 2003
    10. A. Dall’Olio, et al., Acad. Sci. Paris Ser. C, vol. 267, pp. 433-435, 1968
    11. G. Bidan, "Electroconducting conjugated polymers: new sensitive matrices to build up chemical or electrochemical sensors. A review", Sens. Actuators B, vol. 6, pp. 45-56, 1992
    12. K. S. Suslick and N. A. Rakow, "Colorimetric sensor arrays for molecular recognition", Tetrahedron, vol. 60, pp. 11133-11138, 2004
    13. Frank Ro‥ck, Nicolae Barsan, and U. Weimar, "Electronic Nose: Current Status and Future Trends", Chem. Rev., vol. 108, pp. 705-725, 2008
    14. D.S. Ballantine, Acoustic wave sensors: theory, design, and physico- chemical applications, Academic Press, 1997
    15. L. Rayleigh, "On waves propagated along the plane surface of an elastic solid", Proc. London Math. Soc., vol. 17, pp. 4, 1885
    16. R. M. White, "Direct piezoelectric coupling to surface elastic waves", Appl. Phys. Lett., vol. 7, pp. 314-316, 1965
    17. J. J. Campbell, "A method for estimation estimation optical crystal cuts and propagation directions for excitation of piezoelectric surface waves", IEEE Trans. Son. Ultrason, vol. 15, 1968
    18. A. H. Fahmy, "Propagation of acoustic surface waves in multilayers:A matrix description", Appl. Phy. Lett., vol. 22, pp. 495-497, 1973
    19. B. Drafts, "Acoustic wave technology sensors", IEEE TRANSACTIONS ON MiCROWAVE THEORY AND TECHNIQUES, vol. 49, pp. 795-802, 2001
    20. T. Alizadeh and S. Zeynali, "Electronic nose based on the polymer coated SAW sensors array for the warfare agent simulants classification", Sensors and Actuators B: Chemical, vol. 129, pp. 412-423, 2008
    21. M. Rapp, et al., "New miniaturized SAW-sensor array for organic gas detection driven by multiplexed oscillators", Sensors and Actuators B: Chemical, vol. 65, pp. 169-172, 2000
    22. C. Campbell, Surface Acoustic Wave Devices and Their Signal Processing Applications, Academic Press, 1989
    23. 吳朗,電子陶瓷/壓電,全欣資訊,台灣,中華民國八十三年
    24. 邱碧秀,電子陶瓷材料,徐氏基金會,台灣,中華民國七十七年
    25. J. W. Garder, V. K. Varadan, and O.O. Awadelkarim, Microsensors MEMS and Smart Devices, Wiley-VCH, pp. 319-334, 2001
    26. 高國陞,「表面聲波元件之頻率及溫度特性之研究」,國立中山大學電機工程所,博士論文,中華民國九十三年
    27. B. D. Stephen, Acoustic wave sensors: theory, design, and physico-chemical applications, Academic Press, 1996
    28. R. J. Baker, H. W. L., and D.E. Boyce, CMOS circuit design layout and simulation, Wiley-IEEE Press, 1997
    29. D. E. Field, "Fluorinated Polyepoxy And Polyurethane Coatings", Naval Research Laboratory, vol. 48, pp. 615, 1976
    30. J. W. Gardner, V. K. V., and O.O. Awadelkarim, Microsensors MEMS and Smart Devices, Wiley-interscience, pp. 303-306, 1990
    31. K. -y. Hashimoto, Surface Acoustic Wave Device in Telecommunications- Modeling and Simulation, Springer, 2000
    32. D. M. Pozar, Microwave engineering, Wiley, 1998
    33. 李世鴻譯,微波工程,五南圖書出版社,台灣,中華民國九十一年
    34. C. K. Campbell, Surface acoustic wave devices for mobile and wireless communications, Academic Press, 1998
    35. 楊永瑞,「以表面聲波震盪電路為基礎之生化感測系統」,清華大學為機電系統工程研究所,碩士論文,中華民國九十四年
    36. D. Leenaerts, Circuit design for RF transceivers, Kluwer Academic Publishers, 2001
    37. W. A. Davis, Radio frequency circuit design, John Wiley, 2001
    38. R. Ludwing, RF circuit design: Theory and Application, Prentice Hall, 2000
    39. L. Eichinger, Accurate design of Low-noise high frequency SAW oscillators, Agilent EEs of EDA: Agilent Technology, 2005
    40. R. F. Schmitt, "Rapid design of SAW oscillator electronics for sensor application", Sensor and actuator B, vol. 76, pp. 80-85, 2001
    41. D. L. Dermody, "Interactions between Organized, Surface-Confined Monolayers and Vapor-Phase Probe Molecules. 11. Synthesis, Characterization, and Chemical Sensitivity of Self-Assembled Polydiacetylene/Calix[n]arene Bilayers", J. Am. Chem. Soc., vol. 118, pp. 11912-11917, 1996

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE