簡易檢索 / 詳目顯示

研究生: 李俊廷
Lee, Chun-Ting
論文名稱: 基於基因演算法且具有錯誤率保證的近似邏輯合成的研究
Approximate Logic Synthesis by Genetic Algorithm with an Error Rate Guarantee
指導教授: 王俊堯
Wang, Chun-Yao
口試委員: 江介宏
Jiang, Jie-Hong
温宏斌
Wen, Hung-Pin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 28
中文關鍵詞: 近似計算電路最佳化基因演算法
外文關鍵詞: Approximate Computing, Circuit Optimization, Genetic Algorithm
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近似計算是一種針對可容忍錯誤之應用的新興設計技術,它可以透過換取電路的正確性來改善電路的面積、延遲或功耗。我們於此論文提出一種基於基因演算法的近似邏輯合成方法,該方法在保證錯誤率的情況下顯著地減少了電路的面積及深度。我們在IWLS2005和MCNC的電路上進行實驗,實驗結果顯示在5%的錯誤率限制下,我們提出的方法能夠減少多達80%的面積和50%的深度。與最新的方法相比,我們提出的方法在相同的5%錯誤率限制下平均能夠多減少11%的面積和188%的深度。


    Approximate computing is an emerging design technique for error-tolerant applications, which may improve circuit area, delay, or power consumption by trading off a circuit's correctness. In this paper, we propose a novel approximate logic synthesis approach based on genetic algorithm, and the approach significantly reduces circuit sizes and depths with an error rate guarantee. We conduct experiments on a set of IWLS 2005 and MCNC benchmarks. The experimental results demonstrate that the area and depth can be reduced by up to 80% and 50% under a 5% error rate constraint, respectively. As compared with the state-of-the-art method, our approach can achieve an average of 11% more area savings and 188% more depth reduction under the same 5% error rate constraint.

    中文摘要 Abstract Acknowledgement Contents List of Tables List of Figures 1 Introduction 1 2 Preliminaries 3 2.1 Error Metrics 3 2.2 And-Inverter-Graphs 3 2.3 Genetic Algorithm 4 3 Proposed Approach 5 3.1 Node to Constant 5 3.2 Circuit Partitioning 6 3.3 Genetic Algorithm Design 7 3.4 Subcircuit Selection and Combination 15 3.5 Overall Flow 17 4 Experimental Results 19 5 Conclusion 25

    [1] M. Barbareschi et al., “A Catalog-based AIG-Rewriting Approach to the Design of Approximate Components,” IEEE Trans. Emerg. Topics Comput., 2022.
    [2] J. Echavarria et al., “Probabilistic Error Propagation through Approximated Boolean Networks,” Proc. DAC, 2020, pp. 1-6.
    [3] C. M. Fiduccia et al., “A Linear-Time Heuristic for Improving Network Parti- tions,” Proc. DAC, 1982, pp. 175-181.
    [4] J. Han et al., “Approximate Computing: An Emerging Paradigm for Energy- Efficient Design,” Proc. ETS, 2013, pp. 1-6.
    [5] J. H. Holland, “Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence,” MIT Press, 1992.
    [6] S. Karakatic et al., “Optimization of Combinational Logic Circuits with Genetic Programming,” Elektronika ir Elektrotechnika, 2013.
    [7] B. W. Kernighan et al., “An Efficient Heuristic Procedure for Partitioning Graphs,” The Bell System Technical Journal, 1970, pp. 291-307.
    [8] Y. Kim et al., “An Energy Efficient Approximate Adder with Carry Skip for Error Resilient Neuromorphic VLSI Systems,” Proc. ICCAD, 2013, pp. 130-137.
    [9] P. Kulkarni et al., “Trading Accuracy for Power with an Underdesigned Multi- plier Architecture,” Proc. VLSID, 2011, pp. 346-351.
    [10] K. Y. Kyaw et al., “Low-Power High-Speed Multiplier for Error-Tolerant Ap- plication,” Proc. EDSSC, 2010, pp. 1-4.
    [11] Y.-A Lai et al., “Efficient Synthesis of Approximate Threshold Logic Circuits with an Error Rate Guarantee,” Proc. DATE, 2018, pp. 773-778.
    [12] J. Liang et al., “New Metrics for the Reliability of Approximate and Proba- bilistic Adders,” IEEE Trans. Comput., 2013, pp. 1760-1771.
    [13] C. Liu et al., “A Low-Power, High-Performance Approximate Multiplier with Configurable Partial Error Recovery,” Proc. DATE, 2014, pp. 1-4.
    [14] C. Meng et al., “ALSRAC: Approximate Logic Synthesis by Resubstitution with Approximate Care Set,” Proc. DAC, 2020, pp. 1-6.
    [15] L. Hellerman, “A Catalog of Three-Variable Or-Invert and And-Invert Logical Circuits,” IEEE Trans. Electron. Comput., 1963, pp. 198-223.
    [16] I. Scarabottolo et al., “Partition and Propagate: an Error Derivation Algorithm for the Design of Approximate Circuits,” Proc. DAC, 2019, pp. 1-6.
    [17] S. Su et al., “Efficient Batch Statistical Error Estimation for Iterative Multi- level Approximate Logic Synthesis,” Proc. DAC, 2018, pp. 1-6.
    [18] K. S. Tam et al., “An Efficient Approximate Node Merging with an Error Rate Guarantee,” Proc. ASP-DAC, 2021, pp. 266-271.
    [19] Z. Vasicek et al., “Evolutionary Approach to Approximate Digital Circuits De- sign,” IEEE Trans. Evol. Comput., 2015, pp. 432-444.
    [20] S. Venkataramani et al., “Substitute-and-Simplify: A Unified Design Paradigm for Approximate and Quality Configurable Circuits,” Proc. DATE, 2013, pp. 1367-1372.
    [21] A. Wendler et al., “A fast BDD Minimization Framework for Approximate Computing,” Proc. DATE, 2020, pp. 1372-1377.
    [22] S. Yang, “Logic Synthesis and Optimization Benchmarks,” Microelectronics Center of North Carolina, Tech. Rep., 1991.
    [23] N. Zhu et al., “An Enhanced Low-Power High-Speed Adder for Error-Tolerant Application,” Proc. ISIC, 2009, pp. 69-72.
    [24] Berkeley Logic Synthesis and Verification Group. ABC: A Sys- tem for Sequential Synthesis and Verification [Online]. Available: http://www.eecs.berkeley.edu/ alanmi/abc
    [25] http://iwls.org/iwls2005/benchmarks.html

    QR CODE