研究生: |
蘇宏恭 Su, Hung-Kung |
---|---|
論文名稱: |
關於一維Monge-Kantorovich問題的一些研究 Some analysis on one-dimensional Monge-Kantorovich's problem |
指導教授: |
陳國璋
Chen, Kuo-Chang |
口試委員: |
蔡東和
Tsai, Dong-Ho 陳建隆 Chern, Jann-Long |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 48 |
中文關鍵詞: | 優化運輸問題 、優化 、最佳 |
外文關鍵詞: | Monge-Kantorovich, spatial economics, trnsportation, optimal map, network flow optimization, convex programming |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,為了了解Monge-Kantorovich's 問題,我們考慮一些基本的成本函數來研究一維的運輸問題。我們也考慮一類一維特殊例子,滿足連續分部的邊界條件mu與nu及片段連續的成本函數c,然後應用雙隨機矩陣去得到數值最佳估計。
In order to better understand the Monge-Kantorovich's problem, in this thesis we study some elementary examples of cost functions for the one dimensional transportation problem. We also consider a special case of the problem with marginals , that are continuously distributed on the line with piecewise continuous cost functions c of distance, and then use doubly stochastic matrices associated to mu and nu to obtain numerical estimates of the optimal transportation cost.
[1] Ambrosio, L. Lecture notes on optimal transport problems. In Mathematical aspects of
evolving interfaces (Funchal, 2000), vol. 1812 of Lecture Notes in Math. Springer, Berlin,
2003, pp. 152.
[2] Cedric Villani. Topics in optimal transportation Providence, RI : American Mathematical
Society, c2003.
[3] Cedric Villani. Optimal transport, old and new Berlin, Heidelberg : Springer Berlin
Heidelberg, 2009.
[4] Erdelyi, A. & Etherington, I. M. H. 1940 Some problems of non-associative combinations
(2).Edinb. Math. Notes 32, 7-12.
[5] Gangbo, W. & McCann, R. J. 1996 The geometry of optimal transportation. Acta Math.
177, 113-161.
[6] Giuseppe Buttazzo, Eugene Stepanov, Aldo Pratelli, Sergio Solimini, Optimal urban
networks via mass transportation, Berlin : Springer, c2009.
[7] Kantorovich, L. 1942 On the translocation of masses. C. R. (Dokl.) Acad. Sci. URSS
(N.S.) 37, 199-201.
[8] Kellerer, H. G. 1984 Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete
67, 399-432.
[9] Koopmans, T. C. 1949 Optimum utilization of the transportation system. Econometrica
(Suppl.) 17, 136-146
[10] Marc Bernot, Vicent Caselles, Jean M. Morel, Optimal transportation networks : models
and theory, Berlin New York : Springer-Verlag, c2009.
[11] McCann, R. J. Exact solutions to the transportation problem on the line. R. Soc. Lond.
Proc. Ser. A Math. Phys. Eng. Sci., 1999, 455, 1341-1380
[12] Monge, G. 1781 Memoire sur la theorie des deblais et de remblais. Histoire de l'Academie
Royale des Sciences de Paris, avec les Memoires de Mathematique et de Physique pour
la m^eme annee, pp. 666-704.
[13] Vasershtein, L. N. Markov processes over denumerable products of spaces describing
large system of automata. Problemy Peredaci Informacii 5, 3 (1969), 64-72.