研究生: |
吳昱辰 Yu-Chen Wu |
---|---|
論文名稱: |
基底雜訊耦合效應對壓控振盪器影響之分析與模型 Analysis and Modeling of the Substrate Noise Coupling Effect in Voltage Controlled Oscillators |
指導教授: |
徐碩鴻
Shuo-Hung Hsu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 67 |
中文關鍵詞: | 基底雜訊 、壓控震盪器 、電感 |
外文關鍵詞: | substrate noise, voltage-controlled oscillator, inductor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之重點將在於設計及分析電感電容共振型壓控振盪器,以抵抗高頻基底雜訊耦合效應。文中將以實做使用包括微機電製程(MEMs)、Deep N-well層(DNW)、及特殊形狀金屬接地保護層(PGS)等方式作為電感電容共振型壓控振盪器之電感,做為基底雜訊耦合效應的研究。研究中將使用外部訊號源打入雜訊,以觀察出現在壓控振盪器基頻震盪能量兩側之二階調變及三階調變突波之影響。進一步等效電路模型的建立亦將會包含在本論文中,以解釋觀察到之現象。
首先研究5-7 GHz操作頻率之雙電容開關,並使用微機電製程電感之電感電容共振型壓控振盪器對於基底雜訊之影響。相對於使用標準電感之壓控振盪器,使用微機電製程電感之壓控振盪器擁有約80 MHz之頻飄,壓控振盪器旁之二階調變雜訊突波較標準壓控振盪器設計高約2-3 dBm,但亦可觀察到其三階調變雜訊突波較標準設計低約2-3 dBm。
接著將研究使用DNW與PGS之電感、2.4 GHz操作頻率的電感電容共振型壓控振盪器對於基底雜訊之影響。在相同的壓控振盪器電路基本特性下,使用DNW與PGS電感之電感電容共振型壓控振盪器分別有較標準設計低約6-8 dBm以及8-15 dBm之三階調變雜訊突波,但仍保持相同之二階調變雜訊突波。最後,可利用建立符合物理意義的等效電路模型,以各種不同電感設計在等效電路模型中的差異性,來解釋觀察到的現象。
This study focuses on designing and analyzing the LC voltage-controlled oscillators for high substrate noise coupling immunity. The LC-VCOs with various types of the improved inductors including MEMs inductors, deep N-well (DNW) inductors, and patterned ground shield (PGS) inductors are implemented to investigate the substrate noise coupling effects. The external noise is injected to see the impacts of the proposed designs on the second-order (IM2) and third-order intermodulation (IM3) spurs of the VCOs. In addition, the equivalent circuit models are established to explain the observation trends.
First, the substrate noise coupling effects in a 5-7 GHz two-switch LC-VCO using a MEMs inductor are investigated. With a frequency variation around 80 MHz, the IM2 spurs of the VCO with a MEMs inductor are about 2-3 dBm higher than that of the standard design, while smaller IM3 spurs about 2-3 dBm are observed.
Then the substrate noise coupling effects in a 2.4 GHz LC-VCO with DNW and PGS inductors are studied. With a similar circuit performance, the IM3 spurs of the VCOs with DNW and PGS inductors are about 6-8 dBm and 8-15 dBm lower than that of the standard design, respectively, but the IM2 spurs are almost unchanged. Finally, physical-based equivalent circuit models are established to explain the observed trends.
[1] S. Wang, Y. Wu, S. Hsu, and C. Chan, “Substrate coupling effect under various noise injection topologies in LC-voltage controlled oscillator,” IEEE RFIC Symp., pp.705-708, Jun. 2007.
[2] S. Donnay and G. Gielen, Eds., Substrate Noise Coupling in Mixed-Signal ASICs, Kluwer Academic Publishers, 2003.
[3] F. Herzel and B. Razavi, “A study of oscillator jitter due to supply and substrate noise,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process., vol. 46, no. 1, pp. 56-62, Jan. 1999.
[4] M. Xu, D. K. Su, D. K. Shaeffer, T. H. Lee, and B. A. Wooley, “Measuring and modeling the effects of substrate noise on the LNA for a CMOS GPS receiver,” IEEE Custom Integrated Circuits Conf., pp. 353-356, May 2000.
[5] A. Helmy and M. Ismail, “The chip - a design guide for reducing substrate noise coupling in RF applications,” IEEE Circuits & Devices Magazine, pp. 7-21, Sep./Oct. 2006.
[6] N. Checka, D. Wentzloff, A. Chandrakasan, and R. Reif, “The effect of substrate noise on VCO performance,” IEEE RFIC Symposium, pp. 523-525, Jun. 2005.
[7] M. Méndez, D. Mateo, X. Aragonés, and J. González, “Phase noise degradation of LC-tank VCOs due to substrate noise and package coupling,” in Proc. of Eur. Solid-State Circuits Conf., pp. 105-108, 2005.
[8] S. Magierowski, K. Iniewksi, and C. Siu, “Substrate noise coupling effect characterization for RF CMOS LC VCOs,” IEEE Northeast Workshop on Circuits and Systems, pp. 199-202, Jun. 2005.
[9] C. Andrei, O. Valorge, F. Calmon, J. Verdier, and C. Gontrand, “Impact of substrate perturbation on a 5GHz VCO spectrum,” in Proc. of Inter. Conference on Microelectronics (ICM), pp. 684-687, Dec. 2004.
[10] C. Soens, G. Van der Plas, P. Wambacq, S. Donnay, and M. Kuijk, “Performance degradation of LC-tank VCOs by impact of digital switching noise in lightly doped substrates,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1472-1480, Jul. 2005.
[11] C. Soens, G. Van der Plas, M. Badaroglu, P. Wambacq, S. Donnay, Y. Rolain, and M. Kuijk, “Modeling of substrate noise generation, isolation, and impact for an LC-VCO and a digital modem on a lightly-doped substrate,” IEEE J. Solid-State Circuits, vol. 41, No. 9, pp. 2040-2051, Sep. 2006.
[12] A. Pun, T. Yeung, J. Lau, F. Clément, and D. Su, “Substrate noise coupling through planar spiral inductor,” IEEE J. Solid-State Circuits, vol. 33, no. 6, pp. 877-884, Jun. 1998.
[13] B. Razavi, RF Microelectronics, McGraw-Hill, 2001.
[14] T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd Edition, Cambridge, 2004.
[15] D. Pozar, Microwave Engineering, 3rd Edition, John Wiley & Sons, Inc., 2005.
[16] A. Hajimiri and T. Lee, The Design of Low Noise Oscillators, Kluwer Academic Publishers, 1999.
[17] A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
[18] A. Hajimiri and T. Lee, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
[19] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 331-343, Mar. 1996.
[20] E. Hegazi and A. Abidi, “Varactor characteristics, oscillator tuning curves, and AM-FM conversion,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1033-1039, Jun. 2003.
[21] D. Leeson, “A Simple Model of Feedback Oscillator Noise Spectrum,” in Proc. of the IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
[22] H. Hsieh and L. Lu, “A high-performance CMOS voltage-controlled oscillator for ultra-low-voltage operations,” IEEE Trans. Microwave Theory Tech., vol. 55, No. 3, pp. 467-473, Mar. 2007.
[23] H. Hsieh, K. Chung, and L. Lu, “Ultra-low-voltage mixer and VCO in 0.18-□m CMOS,” IEEE RFIC Symp., pp. 167-170, Jun. 2005.
[24] P. Lai, L. Dobos, and S. Long, ”A 2.4GHz SiGe low phase-noise VCO using on chip tapped inductor,” in Proc. of Eur. Solid-State Circuits Conf., pp. 505-508, Sep. 2003.
[25] M. Tsai, Y. Cho, and H. Wang, “A 5-GHz low phase noise differential Colpitts CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, pp. 327-329, May 2005.
[26] H. Chen, C. Chien, H. Chiu, S. Lu, K. Chang, K. Chen, and S. Chen, “A low-power low-phase-noise LC VCO with MEMS Cu inductors,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 6, pp. 434-436, Jun. 2005.
[27] E. Park, J. Yoon, S. Hong, and E. Yoon, “A 2.6 GHz low phase-noise VCO monolithically integrated with high Q MEMS inductors,” in Proc. of Eur. Solid-State Circuits Conf., pp. 147-150, Sep. 2002.
[28] K. Joardar, “A simple approach to modeling cross-talk in integrated circuit,” IEEE J. Solid-State Circuits, vol. 29, pp. 1212-1219, Oct. 1994.
[29] I. Lai and M. Fujishima, “A new on-chip substrate-coupled inductor model implemented with scalable expressions,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2491-2499, Nov. 2000.
[30] M. Fujishima and J. Kino, “Accurate subcircuit model of an on-chip inductor with a new substrate network,” IEEE VLSI Circuits Symp., pp.376-379, Jun. 2004.
[31] K. Kim and Kenneth O, “Characteristics of an integrated spiral inductor with an underlying n-well,” IEEE Trans. Electron Devices, vol. 44, no. 9, pp. 1565-1567, Sep. 1997.
[32] K. Chew, J. Zhang, K. Shao, W. Loh, and S. Chu, “Impact of deep n-well implantation on substrate noise coupling and RF transistor performance for systems-on-a-chip integration,” in Proc. of Eur. Solid-State Device Research Conf., pp. 251-254, 2002.
[33] X. Sun, G. Carchon, Y. Kita, K. Chiba, T. Tani and W. De Raedt, “Experimental analysis of above-IC inductor performance with different patterned ground shield configurations and dummy metals,” in Proc. of Eur. Microwave Conf., pp. 40-43, Sep. 2006.
[34] C. Yue and S. Wong, “On-chip spiral inductor with patterned ground shields for Si-based RF IC’s,” IEEE J. Solid-State Circuits, vol.33, no.5, pp. 743-752, May 1998.
[35] C. Soens, G. Van der Plas, P. Wambacq, and S. Donnay “Simulation methodology for analysis of substrate noise impact on analog / RF circuits including interconnect resistance,” in Proc. of Design, Automation & Test in Europe Conference & Exhibition, vol. 1, pp. 270-276, 2005.
[36] S. Bronckers, C. Soens, G. Van der Plas, G. Vandersteen, and Y. Rolain, “Simulation methodology and experimental verification for the analysis of substrate noise on LC-VCO’s,” in Proc. of Design, Automation & Test in Europe Conference & Exhibition, pp. 1-6, Apr. 2007.