研究生: |
李隆祥 Lee, Lung-Hsiang |
---|---|
論文名稱: |
整合光密度偵測與無線傳輸系統之生物反應器在適應性演化實驗實現大腸桿菌對二氧化碳吸收及驗證硝酸鈉為能量來源 A bioreactor integrating optical density detection and wireless transmission enabled CO₂ absorption in E. coli and validated sodium nitrate as an energy source through adaptive evolution experiments |
指導教授: |
楊雅棠
Yang, Ya-Tang |
口試委員: |
黃介辰
Huang, Chieh-Chen 張晃猷 Chang, Hwan-You |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 固碳途徑 、合成生物學 、2-酮戊二酸:鐵氧還蛋白氧化還原酶 、生物反應器 、演化實驗 、大腸桿菌 、蘋果酸 、硝酸鈉 、厭氧呼吸 |
外文關鍵詞: | Carbon fixation pathways, synthetic biology, 2-oxoglutarate: ferredoxin oxidoreductase, bioreactor, evolutionary experiment, Escherichia coli, malate, sodium nitrate, Anaerobic Respiration |
相關次數: | 點閱:51 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化碳固定化是應對全球氣候變遷的重要策略,本研究通過適應性演化和合成生物學方法,改造大腸桿菌使其具備混營生長的能力,利用演化實驗提升2-酮戊二酸:鐵氧還蛋白氧化還原酶的活性,進而強化其二氧化碳吸收能力,也證明在厭氧呼吸時,硝酸鈉可以作為電子受體,在厭氧呼吸提供能量具有重要的影響力。透過自組設計的生物反應器,利用光密度偵測電路量測菌液的電壓值,藉由無線傳輸系統回傳到電腦,繪製出生長曲線並運算出生長速率,演化實驗過程以氫氣來輔助作為碳源的蘋果酸和作為電子接收者的硝酸鈉,最終得出結論演化後的菌株更適應蘋果酸與硝酸鈉的能量組合,也對二氧化碳的吸收有顯著提升,本研究提供了一種新穎且高效的碳固定途徑,擴展了大腸桿菌作為異營微生物的應用潛力,也為厭氧條件下的微生物代謝研究開創了新思路,特別是厭氧呼吸的能量作用和硝酸鹽及蘋果酸的應用。
Carbon fixation is a crucial strategy to address global climate change. This study utilizes adaptive evolution and synthetic biology to engineer Escherichia coli with the capability for mixotrophic growth. Through evolutionary experiments, the activity of OGOR was enhanced, thereby strengthening its ability to absorb carbon dioxide. The study also demonstrated that sodium nitrate can serve as an electron acceptor during anaerobic respiration, which has an important influence on providing energy during anaerobic respiration. Using a self-designed bioreactor equipped with an optical density detection circuit, the voltage values of the bacterial culture were measured and wirelessly transmitted to a computer. Growth curves were plotted, and growth rates were calculated. The evolutionary experiments used malic acid, supplemented by hydrogen as a carbon source, and sodium nitrate as an electron acceptor. The results showed that the evolved strains adapted better to the energy combination of malic acid and sodium nitrate and significantly improved carbon dioxide absorption. This research offers a novel and efficient carbon fixation pathway, expanding the application potential of E. coli as a heterotrophic microorganism. It also opens new avenues for microbial metabolism research under anaerobic conditions, particularly regarding the role of energy in anaerobic respiration and the applications of nitrate and malic acid.
[1]https://commons.wikimedia.org/wiki/File:20200324_Global_average_temperature_-_NASA-GISS_HadCrut_NOAA_Japan_BerkeleyE.svg
[2] Gulev, S. K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues, C. M., Gerland, S., ... & Hawkins, E. (2021). Changing state of the climate system.
[3] https://gml.noaa.gov/aggi/aggi.html
[4] https://www.spnp.gov.tw/News_Content.aspx?n=14500&s=239293
[5] Berg, I. A. (2011). Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Applied and environmental microbiology, 77(6), 1925-1936.
[6] Bassham, J. A. (2005). Mapping the carbon reduction cycle: a personal retrospective. Discoveries in photosynthesis, 817-832.
[7] Diwan, J. J. (2005). Photosynthetic dark reaction. Biochemistry and Biophysics, Rensselaer Polytechnic Institute.
[8] Portis, A. R., & Parry, M. A. (2007). Discoveries in Rubisco (Ribulose 1, 5-bisphosphate carboxylase/oxygenase): a historical perspective. Photosynthesis Research, 94, 121-143.
[9] Evans, M. C., Buchanan, B. B., & Arnon, D. I. (1966). A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proceedings of the National Academy of Sciences, 55(4), 928-934. [10] Buchanan, B. B., & Arnon, D. I. (1990). A reverse KREBS cycle in photosynthesis: consensus at last. Photosynthesis research, 24, 47-53.
[11] Zhang, X. V., & Martin, S. T. (2006). Driving parts of Krebs cycle in reverse through mineral photochemistry. Journal of the American Chemical Society, 128(50), 16032-16033.
[12] Kraft, B., Strous, M., & Tegetmeyer, H. E. (2011). Microbial nitrate respiration–genes, enzymes and environmental distribution. Journal of biotechnology, 155(1), 104-117.
[13] TIEDJE, J. M. ECOLOGY OF DEN| TRIFICATION AND DISSIMILATORY NITRATE REDUCTION TO AMMONIUM.
[14] Zhang, X., Peng, D., Wan, Q., Ju, K., Wang, N., & Zhang, Y. (2018). Dominant factors of dissimilatory nitrate reduction to ammonia (DNRA) in activated sludge system: A comment. Adv EnvironProt, 8(2), 95-105.
[15] Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., & Stahl, D. A. (2018). Brock biology of microorganisms. 15th Global Edition. Boston, US: Benjamin Cummins, 1, 1391-1407.
[16] Marco, É. G. D., Heck, K., Martos, E. T., & Van Der Sand, S. T. (2017). Purification and characterization of a thermostable alkaline cellulase produced by Bacillus licheniformis 380 isolated from compost. Anais da Academia Brasileira de Ciências, 89(3 Suppl), 2359-2370. [17] Widdel, F., & Pfennig, N. (1992). The genus Desulfuromonas and other gram-negative sulfur-reducing eubacteria. In The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications (pp. 3379-3389). New York, NY: Springer New York.
[18] Thauer, R. K., Jungermann, K., & Decker, K. (1977). Energy conservation in chemotrophic anaerobic bacteria. Bacteriological reviews, 41(1), 100-180.
[19] Canfield, D. E., Glazer, A. N., & Falkowski, P. G. (2010). The evolution and future of Earth’s nitrogen cycle. science, 330(6001), 192-196.
[20] Antonovsky, N., Gleizer, S., Noor, E., Zohar, Y., Herz, E., Barenholz, U., ... & Milo, R. (2016). Sugar synthesis from CO2 in Escherichia coli. Cell, 166(1), 115-125.
[21] Lo, S. C., Chiang, E. P. I., Yang, Y. T., Li, S. Y., Peng, J. H., Tsai, S. Y., ... & Huang, C. C. (2021). Growth enhancement facilitated by gaseous CO2 through heterologous expression of reductive tricarboxylic acid cycle genes in Escherichia coli. Fermentation, 7(2), 98.
[22] 鄭宇辰. (2021). 利用適應性演化實驗實現具 2-酮戊二酸: 鐵氧還蛋白氧化還原酶表現之大腸桿菌在蘋果酸及氫氣下吸收二氧化碳之混營生長. 清華大學電子工程研究所學位論文, 2021, 1-73.
[23] 林鼎舜. (2019). 應用於厭氧環境下細菌培養之無線傳輸型生物反應器. 清華大學電子工程研究所學位論文, 2019, 1-70.
[24] Swain, P. S., Stevenson, K., Leary, A., Montano-Gutierrez, L. F., Clark, I. B., Vogel, J., & Pilizota, T. (2016). Inferring time derivatives including cell growth rates using Gaussian processes. Nature communications, 7(1), 13766.