研究生: |
劉建麟 Lau, Alan Kin Lun |
---|---|
論文名稱: |
形狀與梯度可變之網格紋路結構於三維列印擠出成型系統之研究探討 Investigation on Shape-Selectable Gradient Infill Patterns in Extrusion 3D Printing Systems |
指導教授: |
張禎元
Chang, Jen-Yuen (James) |
口試委員: |
曹哲之
Tsao, Che-Chih 葉孟考 Yeh, Meng-Kao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 83 |
中文關鍵詞: | 三維(3D)列印 、擠出成型技術 、網格結構紋路 |
外文關鍵詞: | 3D Printing, Fused Deposition Modelling (FDM), Infill Patterns |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,三維(3D)列印已經成為現今研究中的熱門發展領域。根據不同的使用目的,三維(3D)列印已經應用於許多不同的領域之中;例如軍事、工業、汽車、醫療、藝術、食物等等。三維(3D)列印是一種製造過程,它將電腦中的數位結構資訊經過轉換後,製作成真實的三維(3D)立體結構。最常見的三維(3D)列印製成可分為三類,擠出成型,顆粒堆積成型,以及光聚合成型。適用於三維(3D)列印的材料有相當多,從熱塑性塑料,橡膠,矽酮,金屬,熱塑性塑料粉末到光敏聚合物等皆可做為三維(3D)列印的使用材料。
本篇論文的研究領域屬於擠出成型的三維(3D)列印技術,主要是在探討由出成型的三維(3D)列印技術製作而成的物體,其結構裡的網格型態、網格密度與結構強度之間的關係。擠壓成型的三維(3D)列印技術是將物體的三維結構經過水平切片後,將這些片狀結構用擠出列印的方式製造出來後,再將片狀結構堆積起來的一種製成方法,透過填充特定的網格型態進入內部結構,可間接影響物體結構的完整性。本篇論文透過數值模擬的方法來研究數種內部網格型態與物體結構強度的關係,透過自行架設之機台來印製進行模擬的物體原型,用此三維(3D)模型進行實驗的方式來相互驗證。本篇論文之結果可提供給日後使用三維(3D)列印的工程師一個判斷準則,當需要印製物體結構時,透過內部網格型態與物體結構強度的關係探討,使工程師能選擇最適合的內部網格型態及密度來印製所需之物體結構已達到所需的結構強度。
The usage of 3D printing has become very popular in recent years due to its usefulness. Depending on the applicable purpose, it has been applied in many sectors; such as military, industrial, automotive, medical, art, food, etc. 3D printing is the process of making three-dimensional objects from a digital source into real physical products. The three most common types of 3D printer are extrusion type, granular type, and light polymerised type. Flexible varieties of material those can be used for 3D printing are ranging from thermoplastics, rubber, silicone, metal, thermoplastic powders to photopolymers.
The scope of this thesis covers 3D printing with extrusion type and the results from implementing many different infill pattern strategies. 3D printer with extrusion type creates an object by slicing it into many stacked horizontal layers and uses infill to provide structural integrity by filling the internal section of an object in particular pattern. Proposed results were based upon qualitative research method combining simulation, mechatronic integration, and experimental verification to investigate how the different shapes of pattern and infill densities in the internal structure would affect the strength of the model. The result will offer additional knowledge for design engineer on selecting infill pattern to achieve optimum mechanical properties.
[1] J. Moilanen; T. Vadén, “Manufacturing in motion: first survey on 3D printing community,” 12 May 2012. [Online]. Available: http://surveys.peerproduction.net/2012/05/manufacturing-in-motion/3/. [Accessed 15 May 2015].
[2] C. Chua; K. Leong; C. Lim, Rapid Prototyping, Singapore: World Scientific, 2003.
[3] A. Kamrani; E. Nasr, Engineering design and rapid prototyping, New York: Springer, 2010.
[4] D. Pham; S. Dimov, Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling, Springer, 2001.
[5] Paris Institute of Technology; 3D Matter, “What is the influence of infill &, layer height and infill pattern on my 3D prints?,” 10 Mar 2015. [Online]. Available: http://my3dmatter.com/influence-infill-layer-heightpattern/. [Accessed 15 May 2015].
[6] PCmag, “3D Printing: What You Need to Know,” [Online]. Available: http://www.pcmag.com/slideshow_viewer/0,3253,l=293816&a=289174&po=1,00.asp. [Accessed 15 May 2015].
[7] H. Lipson; M. Lurman, Fabricated: The New World of 3D Printing, John Wiley & Sons, 2013.
[8] 3daddfab, “What is an STL file and is it obsolete?,” [Online]. Available: http://3daddfab.com/blog/index.php?/archives/4-What-is-an-STL-file-and-is-it-obsolete.html. [Accessed 15 May 2015].
[9] 3daddfab, “AMF - The 3D Printing Format to Replace STL?,” [Online]. Available: http://www.3daddfab.com/blog/index.php?/permalink/AMF-The-3D-Printing-Format-to-Replace-STL.html. [Accessed 15 May 2015].
[10] S. Taylor, “AMF Format for 3D Printing Goes Wider — Now Supported by CimatronE,” 27 Jan 2014. [Online]. Available: http://3dprintingindustry.com/2014/01/27/amf-format-3d-printing-goes-wider-now-supported-cimatrone/. [Accessed 15 May 2015].
[11] “RepRap,” RepRap, [Online]. Available: http://reprap.org/. [Accessed 15 May 2015].
[12] Makerbot, [Online]. Available: http://www.makerbot.com/. [Accessed 15 May 2015].
[13] “Prusa i3,” Reprap, [Online]. Available: http://reprap.org/wiki/Prusa_i3. [Accessed 15 May 2015].
[14] “Darwin,” Reprap, [Online]. Available: http://reprap.org/wiki/Mendel. [Accessed 15 May 2015].
[15] “Mendel,” Reprap, [Online]. Available: http://reprap.org/wiki/Mendel. [Accessed 15 May 2015].
[16] “Simpson,” Reprap, [Online]. Available: http://reprap.org/wiki/Simpson. [Accessed 15 May 2015].
[17] “Micro Delta,” Reprap, [Online]. Available: http://reprap.org/wiki/Micro_Delta. [Accessed 15 May 2015].
[18] “Rostock Mini Pro,” Reprap, [Online]. Available: http://reprap.org/wiki/Rostock_Mini_Pro. [Accessed 15 May 2015].
[19] “About,” Slic3r, [Online]. Available: http://slic3r.org/about. [Accessed 15 May 2015].
[20] “Skeinforge,” [Online]. Available: http://fabmetheus.crsndoo.com/wiki/index.php/Skeinforge. [Accessed 15 May 2015].
[21] “Cura User Manual”.
[22] P. Smid, CNC programming handbook, New York: Industrial Press, 2008.
[23] “G-code,” Reprap, [Online]. Available: http://reprap.org/wiki/G-code. [Accessed 15 May 2015].
[24] “RepRap GCode Cheat Sheet”.
[25] “Repetier-Host,” Repetier, [Online]. Available: http://www.repetier.com/documentation/repetier-host/. [Accessed 15 May 2015].
[26] B. Starly; A. Lau; W. Sun; W. Lau; T. Bradbury, “Direct slicing of STEP based NURBS models for layered manufacturing,” Computer-Aided Design, vol. 37, no. 4, pp. 387-397, 2005.
[27] W. Cao; Y. Miyamoto, “Direct Slicing from AutoCAD Solid Models for Rapid Prototyping,” The International Journal of Advanced Manufacturing Technology, vol. 21, no. 10-11, pp. 739-742, 2003.
[28] R. Jamieson; H. Hacker, “Direct slicing of CAD models for rapid prototyping,” Rapid Prototyping Journal, vol. 1, no. 2, pp. 4-12, 1995.
[29] Z. Zhao; Z. Luc, “Adaptive direct slicing of the solid model for rapid prototyping,” International Journal of Production Research, vol. 38, no. 1, pp. 69-83, 2000.
[30] “PLA monomere (Polylactic Acid),” Matbase, [Online]. Available: http://www.matbase.com/material-categories/natural-and-synthetic-polymers/agro-based-polymers/material-properties-of-polylactic-acid-monomere-pla-m.html#properties. [Accessed 15 May 2015].
[31] M. Bijarimi; S. Ahmad; R. Rasid, “Mechanical, Thermal and Morphological Properties of PLA/PP Melt Blends,” in International Conference on Agriculture, Chemical and Environmental, Dubai, 2012.
[32] H. Lee, Finite Element Simulations With ANSYS Workbench 15, SDC Publications, 2014.
[33] “Polylactic Acid (PLA, Polylactide),” Makeitfrom, [Online]. Available: http://www.makeitfrom.com/material-properties/Polylactic-Acid-PLA-Polylactide/. [Accessed 15 May 2015].
[34] M. Jamshidian; E. Tehrany; M. Imran,; M. Jacquot; S. Desobry, “PolyLactic Lactic Acid: Production, Applications, Nanocomposites, and Release Studies,” Comprehensive Reviews in Food Science and Food Safety, vol. 9, no. 5, pp. 552-571, 2010.
[35] J. Lai, “Moldflow Material Testing Report,” Moldflow Plastics Labs, Kilsyth, 2015.
[36] “QC-H45A2 Universal Material Testing Machine,” Yang Yi Technology Co., Ltd., [Online]. Available: http://www.yy-tech.com.tw/en_products/tensiletester_en-QC-H45A2.htm. [Accessed 15 May 2015].