簡易檢索 / 詳目顯示

研究生: 涂宸瑄
Tu, Chen-Xuan
論文名稱: 以超快時間解析光分解光譜研究光游離誘發雙官能基陽離子電荷轉移動態學
Ultrafast Time-Resolved Photofragmentation Spectroscopic Studies of Photoionization Induced Charge Transfer Dynamics in Bifunctional Molecular Cations
指導教授: 鄭博元
Cheng, Po-Yuan
口試委員: 朱立岡
Chu, Li-Kang
李英裕
Lee, Yin-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 114
中文關鍵詞: 飛秒雷射脈衝電荷轉移共振增強多光子游離光游離-光分解
外文關鍵詞: femtosecond laser pulse, charge transfer, resonance-enhanced multiphoton ionization, photoionization-photofragmentation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文使用飛秒激發-探測及光游離-光分解技術,觀察MPEA (N-methylphenylethylamine)及MNMA (N-methyl-1,2,3,4-tetrahydronaphthalen-2-amine)陽離子的緩解動態學過程。首先使用波長266 nm的飛秒激發脈衝透過分子苯環端的S1 state,以1+1共振增強多光子游離技術將苯環端局部游離並激發至其D1/D2 state,隨後再使用另一道波長範圍600~1500 nm的飛秒探測脈衝偵測陽離子由D1/D2 state緩解至D0 state的動態學過程,並以理論計算的結果協助解釋。MPEA陽離子由D1/D2 state緩解至D0 state的電荷轉移常數(τCT)為2.9 ps,陽離子在D0 state構型緩解再平衡過程的時間常數約為87 ps。MPEA陽離子超快時間解析光分解光譜的尖峰位於1100 nm附近,為陽離子在D0 state的吸收。而MNMA陽離子由D1/D2 state緩解至D0 state的τCT為18 ps,陽離子在D0 state構型緩解再平衡過程的時間常數約為374 ps。MNMA陽離子超快時間解析光分解光譜中位於1200 nm及750 nm出現兩吸收譜帶,分別為陽離子在D1/D2 state及D0 state的吸收,隨著延遲時間增加,兩吸收譜帶呈現消長的趨勢,反映電荷轉移過程的發生。MNMA分子結構上受到剛性環的限制,加上其碳橋上的碳數較MPEA分子多,使得其電子供給端與電子受體端在空間中的距離可能較遠,故MNMA陽離子的τCT較MPEA陽離子的τCT長。


    We employed femtosecond pump-probe photoionization-photofragmentation (fs-PIPF) spectroscopy to study ultrafast charge transfer (CT) dynamics in N-methylphenylethylamine (MPEA) and N-methyl-1,2,3,4-tetrahydronaphthalen-2-amine (MNMA) cations. We used 1+1 REMPI to selectively ionize their phenyl group via their S1 state to reach the cation D1/D2 state, in which the positive charge is more localized in the phenyl ring. The subsequent relaxation dynamics occurring in the cations is then probed by delayed femtosecond laser pulses that result in ion fragmentation. Ion depletion transients were measured by monitoring the ion signal as a function of pump-probe delay time, and the probe laser wavelength was varied between 600-1500 nm to obtain ultrafast time-resolved ion photofragment spectra. For MPEA, the charge transfer time constant (τCT), which corresponds to the internal conversion from the D1/D2 state to D0 state, is about 2.9 ps. The time constant τ3, which was assigned to the equilibrium among conformers in the D0 state, is about 87 ps. The ultrafast time-resolved ion photofragmentation spectrum of MPEA cation exhibits a maximum at 1100 nm and was assigned to the absorption of D0 state cations. For MNMA, the τCT is about 18 ps, and the τ3 is about 374 ps. There are two bands in MNMA cation ultrafast time-resolved ion photofragmentation spectrum, of which the 1200 nm band is due to the absorption of cation D1/D2 state, and the 750 nm band is due to the absorption of D0 state. We observed that the absorption of the D1/D2 state cations decreases slowly with increasing delay time, while the absorption of D0 state cations gradually rises. The complementary temporal behavior of these two species provides a strong evidence for the charge transfer process. Due to the rigidity in MNMA and the fact that the number of carbon atoms in the carbon bridge in MNMA is more than that in MPEA, the distance between electron donor and acceptor is longer in MNMA cation, so the τCT of MNMA cation is longer than that of MPEA cation.

    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 viii 第一章 緒論 1 1.1引文 1 1.2 文獻回顧 3 1.3研究動機 9 第二章 實驗系統與技術 12 2.1飛秒激發-探測技術 12 2.2共振增強多光子游離技術 13 2.3激發-探測光激發-光游離以及激發-探測光游離-光裂解 15 2.3.1激發-探測光激發-光游離 16 2.3.2激發-探測光游離-光分解 16 2.4飛秒雷射系統 17 2.4.1振盪器系統 18 2.4.2脈衝再生放大系統 23 2.5飛秒雷射波長調變器 29 2.5.1波長轉換裝置 30 2.5.2 光學助變放大器 31 2.6 分子束系統 33 2.6.1 超音速分子束 34 2.6.2實驗站裝置 37 2.7飛行時間質譜儀 39 2.8實驗光路設計 43 2.9訊號擷取系統 44 2.10 儀器響應函數 46 2.11藥品的取得及使用 47 第三章 實驗結果與數據整理分析 48 3.1 MPEA及MNMA分子質譜介紹 48 3.2激發-探測光游離-光分解的實驗條件 50 3.2.1激發脈衝波長之選擇 50 3.2.2激發和探測脈衝能量比例對離子損耗訊號之影響 51 3.2.3光游離-光分解離子損耗訊號之驗證 54 3.3 超快時間解析離子光分解光譜之量測 56 3.3.1 離子損耗率之計算 56 3.3.2 離子損耗率與雷射脈衝能量之依存性 58 3.3.3 在不同探測波長之離子損耗率量測 59 3.4 MPEA陽離子超快時間解析光分解光譜及其離子損耗瞬時訊號 61 3.4.1 MPEA陽離子光分解光譜 61 3.4.2 MPEA陽離子損耗瞬時訊號之擬合結果 66 3.5 MNMA陽離子超快時間解析光分解光譜及其離子損耗瞬時訊號 74 3.5.1 MNMA陽離子光分解光譜 74 3.5.2 MNMA陽離子超快時間解析光分解光譜 79 3.5.3 MNMA陽離子損耗瞬時訊號之擬合結果 80 第四章 綜合討論與理論計算 89 4.1理論計算分析方法 89 4.2 MPEA陽離子電荷轉移及構型緩解動態學 91 4.2.1 中性S0 state構型 91 4.2.2 陽離子D0 state構型 93 4.2.3 綜合討論 95 4.3 MNMA陽離子電荷轉移及構型緩解動態學 99 4.3.1 中性S0 state構型 99 4.3.2 陽離子D0 state構型 103 4.3.3 綜合討論 105 第五章 結論 110 參考文獻 112

    1. Barber, J.; Andersson, B., Revealing the Blueprint of Photosynthesis. Nature 1994, 370, 31-34.
    2. Scholes, G. D.; Fleming, G. R.; Olaya-Castro, A.; van Grondelle, R., Lessons from Nature about Solar Light Harvesting. Nat. Chem. 2011, 3, 763-774.
    3. Schlag, E. W.; Sheu, S. Y.; Yang, D. Y.; Selzle, H. L.; Lin, S. H., Distal Charge Transport in Peptides. Angew. Chem. Int. Ed. 2007, 46, 3196-3210.
    4. Yu, J.; Horsley, J. R.; Moore, K. E.; Shapter, J. G.; Abell, A. D., The Effect of a Macrocyclic Constraint on Electron Transfer in Helical Peptides: A Step Towards Tunable Molecular Wires. Chem. Commun. 2014, 50, 1652-1654.
    5. Shah, A.; Adhikari, B.; Martic, S.; Munir, A.; Shahzad, S.; Ahmad, K.; Kraatz, H.-B., Electron Transfer in Peptides. Chem. Soc. Rev. 2015, 44, 1015-1027.
    6. Meggers, E.; Michel-Beyerle, M. E.; Giese, B., Sequence Dependent Long Range Hole Transport in DNA. J. Am. Chem. Soc. 1998, 120, 12950-12955.
    7. Kawai, K.; Majima, T., Hole Transfer Kinetics of DNA. Acc. Chem. Res. 2013, 46, 2616-2625.
    8. Isied, S. S.; Ogawa, M. Y.; Wishart, J. F., Peptide-Mediated Intramolecular Electron Transfer: Long-Range Distance Dependence. Chem. Rev. 1992, 92, 381-394.
    9. Lewis, F. D.; Letsinger, R. L.; Wasielewski, M. R., Dynamics of Photoinduced Charge Transfer and Hole Transport in Synthetic DNA Hairpins. Acc. Chem. Res. 2001, 34, 159-170.
    10. Adams, D. M.; Brus, L.; Chidsey, C. E. D.; Creager, S.; Creutz, C.; Kagan, C. R.; Kamat, P. V.; Lieberman, M.; Lindsay, S.; Marcus, R. A.; Metzger, R. M.; Michel-Beyerle, M. E.; Miller, J. R.; Newton, M. D.; Rolison, D. R.; Sankey, O.; Schanze, K. S.; Yardley, J.; Zhu, X., Charge Transfer on the Nanoscale:  Current Status. J. Phys. Chem. B 2003, 107, 6668-6697.
    11. Gilbert, M.; Albinsson, B., Photoinduced Charge and Energy Transfer in Molecular Wires. Chem. Soc. Rev. 2015, 44, 845-862.
    12. Davis, W. B.; Svec, W. A.; Ratner, M. A.; Wasielewski, M. R., Molecular-Wire Behaviour in p-Phenylenevinylene Oligomers. Nature 1998, 396, 60-63.
    13. Jortner, J.; Bixon, M.; Wegewijs, B.; Verhoeven, J. W.; Rettschnick, R. P., Long-Range, Photoinduced Charge Separation in Solvent-Free Donor—Bridge—Acceptor Molecules. Chem. Phys. Lett. 1993, 205, 451-455.
    14. Bixon, M.; Jortner, J.; Cortes, J.; Heitele, H.; Michel-Beyerle, M., Energy Gap Law for Nonradiative and Radiative Charge Transfer in Isolated and in Solvated Supermolecules. J. Phys. Chem. 1994, 98, 7289-7299.
    15. 鄭博元. Conference in Memory of the Nobel Laureate Ahmed Zewail演講之投影片; 2018.
    16. Weinkauf, R.; Lehr, L.; Metsala, A., Local Ionization in 2-Phenylethyl-N,N-dimethylamine:  Charge Transfer and Dissociation Directly after Ionization. J. Phys. Chem. A 2003, 107, 2787-2799.
    17. Lehr, L.; Horneff, T.; Weinkauf, R.; Schlag, E. W., Femtosecond Dynamics after Ionization:  2-Phenylethyl-N,N-dimethylamine as a Model System for Nonresonant Downhill Charge Transfer in Peptides. J. Phys. Chem. A 2005, 109, 8074-8080.
    18. Cheng, W.; Kuthirummal, N.; Gosselin, J. L.; Sølling, T. I.; Weinkauf, R.; Weber, P. M., Control of Local Ionization and Charge Transfer in the Bifunctional Molecule 2-Phenylethyl-N,N-dimethylamine Using Rydberg Fingerprint Spectroscopy. J. Phys. Chem. A 2005, 109, 1920-1925.
    19. Sun, S.; Mignolet, B.; Fan, L.; Li, W.; Levine, R. D.; Remacle, F., Nuclear Motion Driven Ultrafast Photodissociative Charge Transfer of the PENNA Cation: An Experimental and Computational Study. The Journal of Physical Chemistry A 2017, 121 (7), 1442-1447.
    20. 楊博竣. 超快光游離誘發2-苯基乙基-N,N-二甲基胺陽離子內之電荷轉移動態學研究. 國立清華大學, 新竹市, 2018.
    21. 宋桓宇. 氣相超快光游離誘發雙官能基陽離子內之電荷轉移動態學研究. 國立清華大學, 新竹市, 2020.
    22. 顏暐儒. 光游離誘發雙官能基陽離子超快電荷轉移動態學之距離相依性研究. 國立清華大學, 新竹市, 2020.
    23. Li, S.; Bernstien, E. R.; Seeman, J. I., Stable Conformations of Benzylamine and N,N-Dimethylbenzylamine. J. Phys. Chem. 1992, 96, 8808-8813.
    24. Sun, S.; Bernstein, E., Spectroscopy of Neurotransmitters and Their Clusters. 1. Evidence for Five Molecular Conformers of Phenethylamine in a Supersonic Jet Expansion. J. Am. Chem. Soc. 1996, 118, 5086-5095.
    25. Law, K.; Bernstein, E., Molecular Jet Study of Van Der Waals Complexes of Flexible Molecules: n‐Propyl Benzene Solvated by Small Alkanesa. J. Chem. Phys. 1985, 82, 2856-2866.
    26. Im, H.-S.; Bernstein, E. Determination of the Minimum Energy Conformations of Benzyl Alcohol and 2-Phenethyl Alcohol. Univ Fort Collins Dept of Chemistry, Colorado State, 1989.
    27. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09, Revision A.02, Wallingford, CT, 2009.
    28. Chai, J. D., Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
    29. Burns, L. A.; Mayagoitia, V.-M. Á.; Sumpter, B. G.; Sherrill, C. D., Density-Functional Approaches to Noncovalent Interactions: A Comparison of Dispersion Corrections (DFT-D), Exchange-Hole Dipole Moment (XDM) Theory, and Specialized Functionals. J. Chem. Phys. 2011, 134, 084107.
    30. Li, A.; Muddana, H. S.; Gilson, M. K., Quantum Mechanical Calculation of Noncovalent Interactions: A Large-Scale Evaluation of PMx, DFT, and SAPT Approaches. J. Chem. Theory Comput. 2014, 10, 1563-1575.
    31. Amirav, A.; Even, U.; Jortner, J., Cooling of Large and Heavy Molecules in Seeded Supersonic Beams. Chem. Phys. 1980, 51, 31-42.

    QR CODE