研究生: |
涂宸瑄 Tu, Chen-Xuan |
---|---|
論文名稱: |
以超快時間解析光分解光譜研究光游離誘發雙官能基陽離子電荷轉移動態學 Ultrafast Time-Resolved Photofragmentation Spectroscopic Studies of Photoionization Induced Charge Transfer Dynamics in Bifunctional Molecular Cations |
指導教授: |
鄭博元
Cheng, Po-Yuan |
口試委員: |
朱立岡
Chu, Li-Kang 李英裕 Lee, Yin-Yu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 114 |
中文關鍵詞: | 飛秒雷射脈衝 、電荷轉移 、共振增強多光子游離 、光游離-光分解 |
外文關鍵詞: | femtosecond laser pulse, charge transfer, resonance-enhanced multiphoton ionization, photoionization-photofragmentation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文使用飛秒激發-探測及光游離-光分解技術,觀察MPEA (N-methylphenylethylamine)及MNMA (N-methyl-1,2,3,4-tetrahydronaphthalen-2-amine)陽離子的緩解動態學過程。首先使用波長266 nm的飛秒激發脈衝透過分子苯環端的S1 state,以1+1共振增強多光子游離技術將苯環端局部游離並激發至其D1/D2 state,隨後再使用另一道波長範圍600~1500 nm的飛秒探測脈衝偵測陽離子由D1/D2 state緩解至D0 state的動態學過程,並以理論計算的結果協助解釋。MPEA陽離子由D1/D2 state緩解至D0 state的電荷轉移常數(τCT)為2.9 ps,陽離子在D0 state構型緩解再平衡過程的時間常數約為87 ps。MPEA陽離子超快時間解析光分解光譜的尖峰位於1100 nm附近,為陽離子在D0 state的吸收。而MNMA陽離子由D1/D2 state緩解至D0 state的τCT為18 ps,陽離子在D0 state構型緩解再平衡過程的時間常數約為374 ps。MNMA陽離子超快時間解析光分解光譜中位於1200 nm及750 nm出現兩吸收譜帶,分別為陽離子在D1/D2 state及D0 state的吸收,隨著延遲時間增加,兩吸收譜帶呈現消長的趨勢,反映電荷轉移過程的發生。MNMA分子結構上受到剛性環的限制,加上其碳橋上的碳數較MPEA分子多,使得其電子供給端與電子受體端在空間中的距離可能較遠,故MNMA陽離子的τCT較MPEA陽離子的τCT長。
We employed femtosecond pump-probe photoionization-photofragmentation (fs-PIPF) spectroscopy to study ultrafast charge transfer (CT) dynamics in N-methylphenylethylamine (MPEA) and N-methyl-1,2,3,4-tetrahydronaphthalen-2-amine (MNMA) cations. We used 1+1 REMPI to selectively ionize their phenyl group via their S1 state to reach the cation D1/D2 state, in which the positive charge is more localized in the phenyl ring. The subsequent relaxation dynamics occurring in the cations is then probed by delayed femtosecond laser pulses that result in ion fragmentation. Ion depletion transients were measured by monitoring the ion signal as a function of pump-probe delay time, and the probe laser wavelength was varied between 600-1500 nm to obtain ultrafast time-resolved ion photofragment spectra. For MPEA, the charge transfer time constant (τCT), which corresponds to the internal conversion from the D1/D2 state to D0 state, is about 2.9 ps. The time constant τ3, which was assigned to the equilibrium among conformers in the D0 state, is about 87 ps. The ultrafast time-resolved ion photofragmentation spectrum of MPEA cation exhibits a maximum at 1100 nm and was assigned to the absorption of D0 state cations. For MNMA, the τCT is about 18 ps, and the τ3 is about 374 ps. There are two bands in MNMA cation ultrafast time-resolved ion photofragmentation spectrum, of which the 1200 nm band is due to the absorption of cation D1/D2 state, and the 750 nm band is due to the absorption of D0 state. We observed that the absorption of the D1/D2 state cations decreases slowly with increasing delay time, while the absorption of D0 state cations gradually rises. The complementary temporal behavior of these two species provides a strong evidence for the charge transfer process. Due to the rigidity in MNMA and the fact that the number of carbon atoms in the carbon bridge in MNMA is more than that in MPEA, the distance between electron donor and acceptor is longer in MNMA cation, so the τCT of MNMA cation is longer than that of MPEA cation.
1. Barber, J.; Andersson, B., Revealing the Blueprint of Photosynthesis. Nature 1994, 370, 31-34.
2. Scholes, G. D.; Fleming, G. R.; Olaya-Castro, A.; van Grondelle, R., Lessons from Nature about Solar Light Harvesting. Nat. Chem. 2011, 3, 763-774.
3. Schlag, E. W.; Sheu, S. Y.; Yang, D. Y.; Selzle, H. L.; Lin, S. H., Distal Charge Transport in Peptides. Angew. Chem. Int. Ed. 2007, 46, 3196-3210.
4. Yu, J.; Horsley, J. R.; Moore, K. E.; Shapter, J. G.; Abell, A. D., The Effect of a Macrocyclic Constraint on Electron Transfer in Helical Peptides: A Step Towards Tunable Molecular Wires. Chem. Commun. 2014, 50, 1652-1654.
5. Shah, A.; Adhikari, B.; Martic, S.; Munir, A.; Shahzad, S.; Ahmad, K.; Kraatz, H.-B., Electron Transfer in Peptides. Chem. Soc. Rev. 2015, 44, 1015-1027.
6. Meggers, E.; Michel-Beyerle, M. E.; Giese, B., Sequence Dependent Long Range Hole Transport in DNA. J. Am. Chem. Soc. 1998, 120, 12950-12955.
7. Kawai, K.; Majima, T., Hole Transfer Kinetics of DNA. Acc. Chem. Res. 2013, 46, 2616-2625.
8. Isied, S. S.; Ogawa, M. Y.; Wishart, J. F., Peptide-Mediated Intramolecular Electron Transfer: Long-Range Distance Dependence. Chem. Rev. 1992, 92, 381-394.
9. Lewis, F. D.; Letsinger, R. L.; Wasielewski, M. R., Dynamics of Photoinduced Charge Transfer and Hole Transport in Synthetic DNA Hairpins. Acc. Chem. Res. 2001, 34, 159-170.
10. Adams, D. M.; Brus, L.; Chidsey, C. E. D.; Creager, S.; Creutz, C.; Kagan, C. R.; Kamat, P. V.; Lieberman, M.; Lindsay, S.; Marcus, R. A.; Metzger, R. M.; Michel-Beyerle, M. E.; Miller, J. R.; Newton, M. D.; Rolison, D. R.; Sankey, O.; Schanze, K. S.; Yardley, J.; Zhu, X., Charge Transfer on the Nanoscale: Current Status. J. Phys. Chem. B 2003, 107, 6668-6697.
11. Gilbert, M.; Albinsson, B., Photoinduced Charge and Energy Transfer in Molecular Wires. Chem. Soc. Rev. 2015, 44, 845-862.
12. Davis, W. B.; Svec, W. A.; Ratner, M. A.; Wasielewski, M. R., Molecular-Wire Behaviour in p-Phenylenevinylene Oligomers. Nature 1998, 396, 60-63.
13. Jortner, J.; Bixon, M.; Wegewijs, B.; Verhoeven, J. W.; Rettschnick, R. P., Long-Range, Photoinduced Charge Separation in Solvent-Free Donor—Bridge—Acceptor Molecules. Chem. Phys. Lett. 1993, 205, 451-455.
14. Bixon, M.; Jortner, J.; Cortes, J.; Heitele, H.; Michel-Beyerle, M., Energy Gap Law for Nonradiative and Radiative Charge Transfer in Isolated and in Solvated Supermolecules. J. Phys. Chem. 1994, 98, 7289-7299.
15. 鄭博元. Conference in Memory of the Nobel Laureate Ahmed Zewail演講之投影片; 2018.
16. Weinkauf, R.; Lehr, L.; Metsala, A., Local Ionization in 2-Phenylethyl-N,N-dimethylamine: Charge Transfer and Dissociation Directly after Ionization. J. Phys. Chem. A 2003, 107, 2787-2799.
17. Lehr, L.; Horneff, T.; Weinkauf, R.; Schlag, E. W., Femtosecond Dynamics after Ionization: 2-Phenylethyl-N,N-dimethylamine as a Model System for Nonresonant Downhill Charge Transfer in Peptides. J. Phys. Chem. A 2005, 109, 8074-8080.
18. Cheng, W.; Kuthirummal, N.; Gosselin, J. L.; Sølling, T. I.; Weinkauf, R.; Weber, P. M., Control of Local Ionization and Charge Transfer in the Bifunctional Molecule 2-Phenylethyl-N,N-dimethylamine Using Rydberg Fingerprint Spectroscopy. J. Phys. Chem. A 2005, 109, 1920-1925.
19. Sun, S.; Mignolet, B.; Fan, L.; Li, W.; Levine, R. D.; Remacle, F., Nuclear Motion Driven Ultrafast Photodissociative Charge Transfer of the PENNA Cation: An Experimental and Computational Study. The Journal of Physical Chemistry A 2017, 121 (7), 1442-1447.
20. 楊博竣. 超快光游離誘發2-苯基乙基-N,N-二甲基胺陽離子內之電荷轉移動態學研究. 國立清華大學, 新竹市, 2018.
21. 宋桓宇. 氣相超快光游離誘發雙官能基陽離子內之電荷轉移動態學研究. 國立清華大學, 新竹市, 2020.
22. 顏暐儒. 光游離誘發雙官能基陽離子超快電荷轉移動態學之距離相依性研究. 國立清華大學, 新竹市, 2020.
23. Li, S.; Bernstien, E. R.; Seeman, J. I., Stable Conformations of Benzylamine and N,N-Dimethylbenzylamine. J. Phys. Chem. 1992, 96, 8808-8813.
24. Sun, S.; Bernstein, E., Spectroscopy of Neurotransmitters and Their Clusters. 1. Evidence for Five Molecular Conformers of Phenethylamine in a Supersonic Jet Expansion. J. Am. Chem. Soc. 1996, 118, 5086-5095.
25. Law, K.; Bernstein, E., Molecular Jet Study of Van Der Waals Complexes of Flexible Molecules: n‐Propyl Benzene Solvated by Small Alkanesa. J. Chem. Phys. 1985, 82, 2856-2866.
26. Im, H.-S.; Bernstein, E. Determination of the Minimum Energy Conformations of Benzyl Alcohol and 2-Phenethyl Alcohol. Univ Fort Collins Dept of Chemistry, Colorado State, 1989.
27. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09, Revision A.02, Wallingford, CT, 2009.
28. Chai, J. D., Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
29. Burns, L. A.; Mayagoitia, V.-M. Á.; Sumpter, B. G.; Sherrill, C. D., Density-Functional Approaches to Noncovalent Interactions: A Comparison of Dispersion Corrections (DFT-D), Exchange-Hole Dipole Moment (XDM) Theory, and Specialized Functionals. J. Chem. Phys. 2011, 134, 084107.
30. Li, A.; Muddana, H. S.; Gilson, M. K., Quantum Mechanical Calculation of Noncovalent Interactions: A Large-Scale Evaluation of PMx, DFT, and SAPT Approaches. J. Chem. Theory Comput. 2014, 10, 1563-1575.
31. Amirav, A.; Even, U.; Jortner, J., Cooling of Large and Heavy Molecules in Seeded Supersonic Beams. Chem. Phys. 1980, 51, 31-42.