研究生: |
周子翔 |
---|---|
論文名稱: |
利用表面電漿共振生物感測器定量分析細胞培養液中介白素-6 Quantification of Interleukin-6 in cell culture medium using surface plasmon resonance biosensors |
指導教授: | 吳見明 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 表面電漿共振 、介白素-6 、自組裝單層膜 、非特異性結合 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面電漿共振生物感測器(surface plasmon resonance biosensors) 是藉由偵測晶片表面上折射率微小變化來分析生物分子間的交互作用。利用光學偵測的方法,使其具有不用對待測物進行標誌、高靈敏度和即時快速分析等優點,但受到非特異性結合的影響,表面電漿共振生物感測器較少被使用在偵測複合液體中的分析物。本篇論文目的即是藉由表面電漿共振生物感測器定量細胞所分泌的介白素-6(interleukin- 6, IL-6)。
本論文利用lipopolysaccharide (LPS)刺激細胞分泌IL-6,收集細胞培養液,使用Biacore 3000進行檢測。為了能夠分析出細胞培養液中的IL-6,需提高表面電漿共振生物感測器的特異性和靈敏度,將晶片表面以mercaptoundecanoic acid (MUA)和mercaptohexanol (MCH) 1:3修飾而成混合自組裝單層膜,降低蛋白質非特異性吸附在晶片上。為探討抗體在空間方向性對於偵測IL-6的影響,比較兩種不同固化抗體的方式:一種是抗體直接固化在晶片表面、另一種是抗體藉由親和力與固化在表面的protein G結合。實驗中使用三明治免疫反應的偵測方式,當IL-6與表面的抗體結合後,加入二級抗體放大偵測訊號。
在本實驗結果發現,protein G會與細胞培養液中fetal bovine serum產生非特異性結合,無法分析IL-6濃度。抗體固化在表面的偵測方式中,必須透過二級抗體增強訊號後,才可以定量細胞培養液中IL-6的含量。但由於本實驗中使用的二級抗體濃度較低,且反應時間較短,靈敏度只比未使用二級抗體的方式增加約3.8倍。
1. P. D'Orazio, "Biosensors in clinical chemistry," Clinica Chimica Acta 334, 41-69 (2003).
2. A. Prinz, G. Reither, M. Diskar, and C. Schultz, "Fluorescence and bioluminescence procedures for functional proteomics," (2008), pp. 1179-1196.
3. T. M. Chinowsky, "Optical mutisensors based on surface plasmon resonance," in electrial engineering(University of Washinton, 2000).
4. R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, "Surface plasmon resonance analysis of dynamic biological interactions with biomaterials," Biomaterials 21, 1823-1835 (2000).
5. H. Jiří, "Present and future of surface plasmon resonance biosensors," Analytical and Bioanalytical Chemistry V377, 528-539 (2003).
6. D. Habauzit, J. Chopineau, and B. Roig, "SPR-based biosensors: a tool for biodetection of hormonal compounds," Analytical and Bioanalytical Chemistry 387, 1215-1223 (2007).
7. R. W. Wood, "On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum," Proceedings of the Physical Society of London 18, 269 (1902).
8. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," Journal of the Optical Society of America 31, 213 (1941).
9. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors and Actuators B: Chemical 54, 3-15 (1999).
10. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik A Hadrons and Nuclei 216, 398-410 (1968).
11. E. Kretschmann, and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch 23A, 2135-2136 (1968).
12. B. Liedberg, C. Nylander, and I. Lundstrom, "Surface plasmon resonance for gas detection and biosensing," Sensors and Actuators 4, 299-304 (1983).
13. B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance -- how it all started," Biosensors and Bioelectronics 10, i-ix (1995).
14. "http://www.windsorscientific.co.uk/index.php."
15. "http://www.sensata.com/index.htm."
16. "http://www.biosuplar.com/."
17. M. A. Cooper, "Optical biosensors in drug discovery," Nature Reviews Drug Discovery 1, 515 (2002).
18. C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, "Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies," Current Opinion in Biotechnology 17, 400-405 (2006).
19. H. Takeda, A. Fukumoto, A. Miura, N. Goshima, and N. Nomura, "High-throughput kinase assay based on surface plasmon resonance suitable for native protein substrates " Analytical Biochemistry 357, 262-271 (2006).
20. "http://www.biacore.com/lifesciences/index.html."
21. B. Nguyen, F. A. Tanious, and W. D. Wilson, "Biosensor-surface plasmon resonance: Quantitative analysis of small molecule-nucleic acid interactions," Methods 42, 150-161 (2007).
22. X. Liu, D. Song, Q. Zhang, Y. Tian, L. Ding, and H. Zhang, "Wavelength-modulation surface plasmon resonance sensor," TrAC Trends in Analytical Chemistry 24, 887-893 (2005).
23. S. G. Nelson, K. S. Johnston, and S. S. Yee, "High sensitivity surface plasmon resonace sensor based on phase detection," Sensors and Actuators B: Chemical 35, 187-191 (1996).
24. C.-M. Wu, Z.-C. Jian, S.-F. Joe, and L.-B. Chang, "High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry," Sensors and Actuators B: Chemical 92, 133-136 (2003).
25. D. R. Shankaran, and N. Miura, "Trends in interfacial design for surface plasmon resonance based immunoassays," Journal of Physics D: Applied Physics 40, 7187-7220 (2007).
26. Biacore, Concentration Analysis Handbook.
27. D. R. Shankaran, K. Matsumoto, K. Toko, and N. Miura, "Development and comparison of two immunoassays for the detection of 2,4,6-trinitrotoluene (TNT) based on surface plasmon resonance," Sensors and Actuators B: Chemical 114, 71-79 (2006).
28. N. Miura, M. Sasaki, K. V. Gobi, C. Kataoka, and Y. Shoyama, "Highly sensitive and selective surface plasmon resonance sensor for detection of sub-ppb levels of benzo[a]pyrene by indirect competitive immunoreaction method," Biosensors and Bioelectronics 18, 953-959 (2003).
29. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology," (ChemInform, 2005), pp. 1103-1170.
30. D. L. Allara, "Critical issues in applications of self-assembled monolayers," Biosensors and Bioelectronics 10, 771-783 (1995).
31. T. Wink, S. J. vanZuilen, A. Bult, and W. P. vanBennekom, "Self-assembled monolayers for biosensors," Analyst 122, R43-R50 (1997).
32. A. Ulman, "Formation and Structure of Self-Assembled Monolayers," Chemical Reviews 96, 1533-1554 (1996).
33. J. F. Masson, T. M. Battaglia, J. Cramer, S. Beaudoin, M. Sierks, and K. S. Booksh, "Reduction of nonspecific protein binding on surface plasmon resonance biosensors," Analytical and Bioanalytical Chemistry 386, 1951-1959 (2006).
34. J. F. Masson, T. M. Battaglia, P. Khairallah, S. Beaudoin, and K. S. Booksh, "Quantitative Measurement of Cardiac Markers in Undiluted Serum," Analytical Chemistry 79, 612-619 (2007).
35. B. Ge, and F. Lisdat, "Superoxide sensor based on cytochrome c immobilized on mixed-thiol SAM with a new calibration method," Analytica Chimica Acta 454, 53-64 (2002).
36. A. Subramanian, J. Irudayaraj, and T. Ryan, "A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157:H7," Biosensors and Bioelectronics 21, 998-1006 (2006).
37. Y. Teramura, and H. Iwata, "Label-free immunosensing for [alpha]-fetoprotein in human plasma using surface plasmon resonance," Analytical Biochemistry 365, 201-207 (2007).
38. F. Frederix, K. Bonroy, W. Laureyn, G. Reekmans, A. Campitelli, W. Dehaen, and G. Maes, "Enhanced Performance of an Affinity Biosensor Interface Based on Mixed Self-Assembled Monolayers of Thiols on Gold," Langmuir 19, 4351-4357 (2003).
39. M. Kyo, K. Usui-Aoki, and H. Koga, "Label-Free Detection of Proteins in Crude Cell Lysate with Antibody Arrays by a Surface Plasmon Resonance Imaging Technique," Analytical Chemistry 77, 7115-7121 (2005).
40. E. Briand, M. Salmain, J.-M. Herry, H. Perrot, C. Compere, and C.-M. Pradier, "Building of an immunosensor: How can the composition and structure of the thiol attachment layer affect the immunosensor efficiency?," Biosensors and Bioelectronics 22, 440-448 (2006).
41. E. Briand, M. Salmain, C. Compere, and C.-M. Pradier, "Anti-rabbit immunoglobulin G detection in complex medium by PM-RAIRS and QCM: Influence of the antibody immobilisation method," Biosensors and Bioelectronics 22, 2884-2890 (2007).
42. T. Kishimoto, "The biology of interleukin-6," Blood 74, 1-10 (1989).
43. B. M. Marta Łukaszewicz, Maciej Szmitkowski "Clinical significance of interleukin-6 (IL-6) as a prognostic factor of cancer disease," Polish Archives of Internal Medicine 117, 5-6 (2007).
44. R. Lutter, S. Loman, M. Snoek, T. Roger, T. A. Out, and H. M. Jansen, "IL-6 protein production by airway epithelial(-like) cells disabled in IL-6 mrna degradation," Cytokine 12, 1275-1279 (2000).
45. F. R. Jirik, T. J. Podor, T. Hirano, T. Kishimoto, D. J. Loskutoff, D. A. Carson, and M. Lotz, "Bacterial lipopolysaccharide and inflammatory mediators augment IL-6 secretion by human endothelial cells," The Journal of Immunology 142, 144-147 (1989).
46. "http://www.ebioscience.com/."
47. D. C. Helfgott, L. T. May, Z. Sthoeger, I. Tamm, and P. B. Sehgal, "Bacterial lipopolysaccharide (endotoxin) enhances expression and secretion of beta 2 interferon by human fibroblasts," (1987), pp. 1300-1309.
48. P. S. Katsamba, I. Navratilova, M. Calderon-Cacia, L. Fan, K. Thornton, M. Zhu, T. V. Bos, C. Forte, D. Friend, I. Laird-Offringa, G. Tavares, J. Whatley, E. Shi, A. Widom, K. C. Lindquist, S. Klakamp, A. Drake, D. Bohmann, M. Roell, L. Rose, J. Dorocke, B. Roth, B. Luginbuhl, and D. G. Myszka, "Kinetic analysis of a high-affinity antibody/antigen interaction performed by multiple Biacore users," Analytical Biochemistry 352, 208-221 (2006).
49. P. A. v. d. Merwe, "Surface plasmon resonance."
50. L. Bin, M. R. Smyth, and R. O'Kennedy, "Oriented immobilization of antibodies and its applications in immunoassays and immunosensors " Analyst 121, R29-R32 (1996).
51. "http://www.piercenet.com/."
52. J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, "Sensitivity enhancement of surface plasmon resonance biosensing of small molecules," Analytical Biochemistry 343, 125-135 (2005).
53. H. Huang, P. Ran, and Z. Liu, "Signal enhancement of surface plasmon resonance-based immunoassays for the allergen detection," Sensors and Actuators B: Chemical 131, 417-423 (2008).
54. J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, "Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk," International Journal of Food Microbiology 75, 61-69 (2002).