簡易檢索 / 詳目顯示

研究生: 洪敬懿
Ching-Yi Hung
論文名稱: 非揮發記憶體用銻基相變化材料開發
Novel Antimony-based Phase Change Materials
指導教授: 金重勳
Tsung-Shung Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 121
中文關鍵詞: 相變化記憶體銻基相變化材料電阻率結晶溫度結晶活化能結晶動力學
外文關鍵詞: phase change memory, antimony-based phase change materials, resistivity, crystallization temperature, activation energy, crystallization kinetics
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相變化記憶體(phase change memory)為近年來受高度重視之非揮發性記憶體,利用電流脈衝在高阻態與低阻態間作可逆之相變化而達成儲存之目的。Ge2Sb2Te5為一習用於相變化記錄之相變材料,以材料的觀點切入,仍存在許多缺點與值得增進之處:碲為低熔點與高蒸氣壓之有毒元素易導致材料內部之相分離;此外,Ge2Sb2Te5之低結晶溫度(~160 ℃)使資料高溫穩定性略顯不足而其高熔點(613 ℃)會造成操作時過多的能量消耗。本實驗以開發二元與三元銻基合金為目標。銻為非硫屬元素且銻基材料具有成長控制型結晶機制,可於非晶態與結晶態間作快速之相轉換。
    在MgxSb100-x (x= 24 ~ 57 at.%)系統開發中,Mg含量越高使得晶格排列更為散亂而達到提升初鍍態與結晶態電阻率之效果,且均具有相轉換之特性。隨Mg含量增高從兩階之相轉換合而為一。此外,運用非恆溫與恆溫結晶動力學可推導其結晶活化能與反應係數,並利用外插的方式估算其資料穩定性。Mg57Sb43雖已脫離原本實驗設計以銻基為主軸之開發初衷,但其電阻率差值可達三個數量級,在電性表現與資料穩定性方面皆比Ge2Sb2Te5優異。
    在Al-Sb之二元合金系統中,受限於AlSb結晶相在室溫大氣中易於潮解而形成原生氧化物,有鑒於氧含量之控制不易,本實驗僅針對成份Al16Sb84深入研究。Al16Sb84初鍍薄膜為非晶態,且可穩定保存於大氣中,從室溫升至400℃具有三階段之阻值變化,相較於Ge2Sb2Te5,Al16Sb84在結晶溫度(197 ℃)與結晶活化能(3.74 eV)之表現較為優異,具有良好之熱穩定性,但其主要缺點為結晶態電阻率過低,僅6.72E-04 (W•cm)。
    第三部份為三元合金之開發,In3Sb7為ㄧ已用於光碟系統之相變化材料,Mg添加之In3Sb7在相變化材料開發各項研究指標中均能有效改善,涵蓋提升初鍍態與結晶態之電阻率,增進感測區域範圍,提高結晶溫度並些微降低熔點,僅在結晶活化能的部份下降,但其外插後在車用電子操作溫度120 ℃下之使用年限已相當足夠。


    Research on phase change random access memory (PCRAM) has grown significantly in the past 10 years. PCRAM is based on the resistance switching, which is caused by the phase change triggered by electric pulses. Te-based Ge2Sb2Te5 has received intensive attention for their application to PCRAM due to large sensing margin, rapid phase changes for writing and erasing of data. However, some problems still remain. It is well known that Te is with low melting temperature, high vapor pressure and toxic, which may lead to phase separation within the materials. It has also been noticed that its low crystallization temperature and high melting temperature affects the stability of amorphous state and leads to high reset current during operation. In this study, novel non-chalcogenide Sb-based binary and ternary phase change materials have been investigated, aiming at a chance to replace the commercial Ge2Sb2Te5.
    We have proposed novel amorphous MgxSb100-x films with new functionality for use in PCRAM due to appropriate characteristics. Both resistivity at crystalline state and crystallization temperature increase with increasing Mg content. These films all show switching phenomena between high and low resistance states. Crystallization kinetics of these films was studied by measuring the temperature dependent electrical resistance during non-isothermal heating. The activation energy (Ea), rate factor (K0) were deduced from Kissinger’s plot. Furthermore, data retention was calculated from the extrapolation of the Arrhenius plot. Mg57Sb43 films exhibited a three-order of magnitude decrease in resistivity, better electrical performance and data retention than Ge2Sb2Te5 does.
    In the binary Al-Sb system, serious oxidation was encountered during experimental processes, specifically when the aluminum content is high. The crystalline AlSb is instable in air and high reactivity with oxygen and moisture. These drawbacks limit the development of Al-Sb binary alloys. In this study, we focused on the Al16Sb84 film, which remains stable at the amorphous state even after exposuring to air for a month. Al16Sb84 possesses high crystallization temperature(197 ℃) and activation energy(3.74 eV) which is helpful for amorphous stability.
    In the ternary alloys, metal added Sb-rich InSb is a promising phase change material for 16x rewritable DVD media. In3Sb7 has been selected in this study due to its high crystallization speed and a high thermal stability. According to the experience in the binary Mg-Sb system, we elevated its crystallization temperature and the resistivity of crystalline state successfully by doping magnesium.

    摘要 Ⅰ. Abstract Ⅱ. 致謝 Ⅳ. 目錄 Ⅴ. 圖目錄 Ⅸ. 表目錄 ⅩⅤ. 第一章 緒論 1.1 簡介 1. 1.2 研究目的 5. 第二章 文獻回顧 2.1 硫屬化合物 7. 2.2 相變化記憶體的紀錄原理 7. 2.2.1 寫入能力 10. 2.2.2 擦拭能力 11. 2.2.3 讀取能力 12. 2.2.4 資料穩定性 13. 2.2.5 循環擦寫能力 14. 2.3 銻基(Sb-based)高速相變化材料 15. 2.3.1 銻基(Sb-based)材料之結晶機制 16. 2.3.2 銻基(Sb-based)材料之結晶速率 19. 2.3.3 銻基(Sb-based)材料之成核時間 21. 2.3.4 銻基(Sb-based)二元相變化材料 22. 2.4 元件結構 24. 2.4.1 熱阻型(heater)結構記憶胞 25. 2.4.2 T型(T-shape)結構記憶胞 26. 2.4.3 U型(U-shape)加熱結構記憶胞 28. 2.4.4 邊緣接觸型(edge contact)結構記憶胞 29. 2.4.5 環形(Ring-type)結構記憶胞 30. 2.4.6 m-Trench結構記憶胞 31. 2.4.7 線型(line)結構記憶胞 32. 2.5 結晶動力學 33. 2.5.1 恆溫分析法 33. 2.5.2 非恆溫分析法 36. 第三章 實驗方法與步驟 3.1 薄膜製程 39. 3.1.1 實驗靶材 39. 3.1.2 實驗流程 39. 3.2 薄膜分析設備原理與操作步驟 42. 3.2.1 膜厚量測儀(α-step) 42. 3.2.2 四點探針儀(four-point probe) 43. 3.2.3 變溫阻值量測 45. 3.2.4 示差熱分析儀(DTA) 47. 3.3.5 X光薄膜繞射儀 47. 3.3.6 場發射電子微探分析儀(FE-EPMA) 49. 第四章 結果與討論 4.1 Ge2Sb2Te5 50. 4.1.1 薄膜電性分析 50. 4.1.2 薄膜熱分析 51. 4.1.3 薄膜晶體結構分析 52. 4.1.4 結晶動力學 53. 4.1.5 本節結論 60. 4.2 鎂銻系統(Mg-Sb system) 61. 4.2.1 薄膜成份分析 62. 4.2.2 薄膜電性分析 63. 4.2.3 薄膜熱分析 66. 4.2.4 薄膜晶體結構分析 68. 4.2.5 結晶動力學 74. 4.2.6 本節結論 83. 4.3 鋁銻系統(Al-Sb system) 85. 4.3.1 薄膜成份分析 86. 4.3.2 薄膜電性分析 88. 4.3.3 薄膜熱分析 91. 4.3.4 薄膜晶體結構分析 92. 4.3.5 結晶動力學 94. 4.3.6 本節結論 96. 4.4 鎂銦銻系統(Mg doped-In3Sb7 system) 98. 4.4.1 薄膜成份分析 100. 4.4.2 薄膜電性分析 101. 4.4.3 薄膜熱分析 103. 4.4.4 薄膜晶體結構分析 105. 4.4.5 結晶動力學 106. 4.4.6 本節結論 111. 第五章 結論 二元系統 鎂銻系統(Mg-Sb) 113. 鋁銻系統(Al-Sb) 113. 三元系統 鎂銦銻系統(Mg doped-In3Sb7) 114. 未來工作與研究方向之建議 115. 參考文獻 116.

    1. Varesi, E., Advances in Phase Change Memory Technology. E/PCOS(European Phase Change and Ovonic Science Sympoisum), 2006.
    2. BEZ, R., Introduction to Flash Memory. PROCEEDINGS OF THE IEEE, 2003. 91(4).
    3. Chen, Y.C., Ultra-Thin Phase-Change Bridge Memory Device Using GeSb. IEDM Tech. Dig., 2006.
    4. Lacaita, A.L., Progress of Phase Change Non Volatile Memory Devices. E/PCOS(European Phase Change and Ovonic Science Sympoisum), 2006.
    5. Lacaita, A.L., Phase change memories: State-of-the-art, challenges and perspectives. Solid-State Electronics 2006. 50: p. 24-31.
    6. Rao, F., et al., Investigation on the stabilization of the median resistance state for phase change memory cell with doublelayer chalcogenide films. Applied Physics Letters, 2007. 91(12).
    7. Liu, B., et al., Nitrogen-implanted Ge2Sb2Te5 film used as multilevel storage media for phase change random access memory. Semiconductor Science and Technology, 2004. 19(6): p. L61-L64.
    8. Liu, B., et al., Effect of N-implantation on the structural and electrical characteristics of Ge2Sb2Te5 phase change film. Thin Solid Films, 2005. 478(1-2): p. 49-55.
    9. Privitera, S., E. Rimini, and R. Zonca, Amorphous-to-crystal transition of nitrogen- and oxygen-doped Ge2Sb2Te5 films studied by in situ resistance measurements. Applied Physics Letters, 2004. 85(15): p. 3044-3046.
    10. Qiao, B.W., et al., Effects of Si doping on the structural and electrical properties of Ge2Sb2Te5 films for phase change random access memory. Applied Surface Science, 2006. 252(24): p. 8404-8409.
    11. Ryu, S.W., et al., SiO2 incorporation effects in Ge2Sb2Te5 films prepared by magnetron sputtering for phase change random access memory devices. Electrochemical and Solid State Letters, 2006. 9(8): p. G259-G261.
    12. Ryu, S.O., et al., Crystallization behavior and physical properties of Sb-excess Ge2Sb2+xTe5 thin films for phase change memory (PCM) devices. Journal of the Electrochemical Society, 2006. 153(3): p. G234-G237.
    13. Park, T.J., S.Y. Choi, and M.J. Kang, Phase transition characteristics of Bi/Sn doped Ge2Sb2Te5 thin film for PRAM application. Thin Solid Films, 2007. 515(12): p. 5049-5053.
    14. Wang, K., et al., Influence of Bi doping upon the phase change characteristics of Ge2Sb2Te5. Journal of Applied Physics, 2004. 96(10): p. 5557-5562.
    15. Wang, K., et al., Influence of doping upon the phase change characteristics of Ge2Sb2Te5. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2007. 13(2): p. 203-206.
    16. Song, W.D., et al., Phase change behaviors of Sn-doped Ge-Sb-Te material. Applied Physics Letters, 2007. 90(9).
    17. Hu, D.Z., J.S. Zhu, and J.K. Lee, The crystallization of Cu-doped Ge2Sb2Te5. Integrated Ferroelectrics, 2006. 84: p. 233-238.
    18. Kim, D.H., et al., Characterization of Ag-x(Ge2Sb2Te5)(1-x) thin film by RF magnetron sputtering. Materials Characterization, 2007. 58(5): p. 479-484.
    19. Wei, S.J., et al., Phase change characteristics of aluminum doped Ge2Sb2Te5 films prepared by magnetron sputtering. Optics Express, 2007. 15(17): p. 10584-10590.
    20. Liu, B., et al., Structure and sheet resistance of boron-implanted Ge2Sb2Te5 phase change film. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2005. 119(2): p. 125-130.
    21. Wang, K., et al., Effect of indium doping on Ge2Sb2Te5 thin films for phase-change optical storage. Applied Physics a-Materials Science & Processing, 2005. 80(8): p. 1611-1616.
    22. Wuttig, M., Phase-change materials - Towards a universal memory? Nature Materials, 2005. 4(4): p. 265-266.
    23. Alder, D., Electronics, 1970. 28(61).
    24. Ovshinsky, S.R., IEEE Trans. on Electronic Devices, 1973. 91.
    25. Abdel-Aziz, M.M., Memory switching of germanium tellurium amorphous semiconductor. Applied Surface Science, 2006. 253(4): p. 2059-2065.
    26. Feinleib, J., et al., Appl. Phys. Lett., 1971. 18(254).
    27. Yin, Y., H. Sone, and S. Hosaka, Simulation of proposed confined-chalcogenide phase-change random access memory for low reset current by finite element modelling. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2006. 45(8A): p. 6177-6181.
    28. Lee, H. and D.H. Kang, Switching characterization and failure analysis of In2Se3 based phase change memory. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005. 44(7A): p. 4759-4763.
    29. Sokolov, A.V., Optical properties of Metals. 1961.
    30. Lee, S.H., et al., Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires. Applied Physics Letters, 2006. 89(22).
    31. Lee, J.I., Highly Scalable Phase Change Memory with CVD GeSbTe for Sub 50nm Generation. 2007 VLSI Tech. Dig., 2007: p. 102-103.
    32. Wickersham, C.E., G. Bajor, and J.E. Greene, Solid State Commun., 1978. 27(17).
    33. Khulbe, P.K., et al., Appl. Opt., 2002. 41(6220).
    34. Kageyama, Y., et al., Compact disc erasable (CD-E) with Ag-In-Sb-Te phase-change recording material. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1996. 35(1B): p. 500-501.
    35. Lankhorst, M.H.R., et al., Prospects of doped Sb-Te phase-change materials for high-speed recording. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2003. 42(2B): p. 863-868.
    36. van Pieterson, L., et al., Te-free, Sb-based phase-change materials for high-speed rewritable optical recording. Applied Physics Letters, 2003. 83(7): p. 1373-1375.
    37. van Pieterson, L., J.C.N. Rijpers, and J. Hellmig, Phase-change media for ultrahigh-speed digital versatile disc recording. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2004. 43(7B): p. 4974-4977.
    38. Suzuki, E., et al., In-Sb phase-change material for 16x rewritable digital versatile disk. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2005. 44(5B): p. 3598-3600.
    39. Shimidzu, N., et al., Dynamic observation study of crystallization process in Sb-based phase-change materials. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2007. 46(12-16): p. L385-L387.
    40. van Pieterson, L., et al., Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview. Journal of Applied Physics, 2005. 97(8).
    41. Kang, M.J., et al., Electrical properties and crystallization behavior of SbxSe100-x thin films. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2007. 13(2): p. 153-159.
    42. Park, T.J., et al., Phase transition characteristics and nonvolatile memory device performance of ZnxSb100-x alloys. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2007. 46(20-24): p. L543-L545.
    43. Zhang, T., et al., Te-free SiSb phase change material for high data retention phase change memory application. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2007. 46(25-28): p. L602-L604.
    44. Cho, W.Y., et al., A 0.18-mu m 3.0-V 64-Mb nonvolatile phase-transition random access memory (PRAM). Ieee Journal of Solid-State Circuits, 2005. 40(1): p. 293-300.
    45. Hwang, Y.N., Writing Current Reduction for High-density Phase-change RAM. IEDM Tech. Dig., 2006: p. 893-896.
    46. Y. H. Ha, e.a., An Edge Contact Type Cell for Phase Change RAM Featuring Very Low Power Consumption. Sym.VLSI Tech. Dig., 2003: p. 175-176.
    47. Lacaita, A.L., Phase change memories: State-of-the-art, challenges and perspectives. Solid-State Electronics, 2006. 50(1): p. 24-31.
    48. Lee, S.Y., et al., Polycrystalline silicon-germanium heating layer for phase-change memory applications. Applied Physics Letters, 2006. 89(5).
    49. Lee, S.Y., et al., Silicon-based thin films as bottom electrodes in chalcogenide nonvolatile memories. Applied Surface Science, 2007. 254(1): p. 312-315.
    50. Kim, C., et al., Fullerene thermal insulation for phase change memory. Applied Physics Letters, 2008. 92(1).
    51. S.L. Cho, e.a., Highly Scalable On-axis Confined Cell Structure for High Density PRAM beyond 256Mb. IEDM Tech. Dig., 2005: p. 96-97.
    52. Park, Y.S., et al., Writing current reduction in phase change memory device with U-shaped heater (PCM-U). Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2006. 45(20-23): p. L516-L518.
    53. Jeong, C.W., et al., Highly reliable ring-type contact for high-density phase change memory. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2006. 45(4B): p. 3233-3237.
    54. Y.J. Song, e.a., Advanced Ring Type Contact Technology for High Density Phase Change Memory. Proceedings of ESSDERC, 2005: p. 513-516.
    55. Lankhorst, M.H.R., B. Ketelaars, and R.A.M. Wolters, Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Materials, 2005. 4(4): p. 347-352.
    56. Johnson, W.A. and K.F. Mehl, Trans. Am. Inst. Mining Met. Eng., 1981. 135: p. 315.
    57. Avrami, M., J. Chem. Phys., 1939. 7: p. 1103.
    58. Avrami, M., J. Chem. Phys., 1940. 8: p. 212.
    59. Avrami, M., J. Chem. Phys., 1941. 9: p. 177.
    60. Henderson, D.W., J. Non-Cryst. Solids, 1979. 30: p. 301.
    61. Christian, J.W., Transformations in Metals and Alloys, 1975: p. 15-22.
    62. Jr., A.U., The Bell System Technical Journal, 1955. 34: p. 105.
    63. F.M.Smits, The Bell System Technical Journal, 1958. 37: p. 711-718.
    64. 吳泰伯, X光繞射原理與材料結構分析. 1999.
    65. 林麗娟, 微結構分析技術之介紹. 工業材料雜誌, 2002. 181期(73).
    66. Nonaka, T., et al., Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase. Thin Solid Films, 2000. 370(1-2): p. 258-261.
    67. Morales-Sanchez, E., et al., Structural, electric and kinetic parameters of ternary alloys of GeSbTe. Thin Solid Films, 2005. 471(1-2): p. 243-247.
    68. Friedrich, I., et al., Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements. Journal of Applied Physics, 2000. 87(9): p. 4130-4134.
    69. Pirovano, A., et al., Reliability study of phase-change nonvolatile memories. Ieee Transactions on Device and Materials Reliability, 2004. 4(3): p. 422-427.
    70. Kalb, J.A., F. Spaepen, and M. Wuttig, Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording. Journal of Applied Physics, 2005. 98(5).
    71. Russo, U., et al., Intrinsic data retention in nanoscaled phase-change memories - Part I: Monte Carlo model for crystallization and percolation. Ieee Transactions on Electron Devices, 2006. 53(12): p. 3032-3039.
    72. Russo, U., D. Ielmini, and A.L. Lacaita, Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation. Ieee Transactions on Electron Devices, 2007. 54(10): p. 2769-2777.
    73. Wei, X.Q., et al., Thickness dependent nano-crystallization in Ge2Sb2Te5 films and its effect on devices. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007. 46(4B): p. 2211-2214.
    74. Redaelli, A., et al., A reliable technique for experimental evaluation of crystallization activation energy in PCMs. Ieee Electron Device Letters, 2008. 29(1): p. 41-43.
    75. Xu, R., R.A. Degroot, and W. Vanderlugt, RESISTIVITIES AND BAND STRUCTURES OF ALKALINE-EARTH-PNICTIDE SYSTEMS. Journal of Physics-Condensed Matter, 1993. 5(41): p. 7551-7562.
    76. Condron, C.L., et al., Thermoelectric properties and microstructure of M9(3)Sb(2). Journal of Solid State Chemistry, 2006. 179(8): p. 2252-2257.
    77. Nayeb-Hashemi, A.A. and J.B. Clark, Bull. Alloy Phase Diagrams 6(2), Apr 1985.
    78. Hou, Z.F., et al., Formation energies of lithium intercalations in AlSb, GaSb and InSb. Physchemcomm, 2003. 6: p. 47-50.
    79. Strossner, K., C.K. Kim, and M. Cardona, DEPENDENCE OF THE DIRECT AND INDIRECT GAP OF ALSB ON HYDROSTATIC-PRESSURE. Physical Review B, 1986. 33(6): p. 4044-4053.
    80. Massalski, T.B., Binary alloy phase diagrams Second Eddition. 1990.
    81. Chang, C.A., et al., MOLECULAR-BEAM EPITAXY OF AISB. Applied Physics Letters, 1982. 40(11): p. 983-985.
    82. Dasilva, F.W.O., et al., AUGER AND ELECTRON-ENERGY LOSS SPECTROSCOPIES STUDY OF THE OXIDATION OF ALSB(001) THIN-FILMS GROWN BY MOLECULAR-BEAM EPITAXY. Thin Solid Films, 1991. 200(1): p. 33-48.
    83. Nakata, J., et al., SUPPRESSION OF ALSB OXIDATION WITH HYDROCARBON PASSIVATION LAYER INDUCED BY MEV-HE+ IRRADIATION. Journal of Applied Physics, 1994. 76(4): p. 2078-2085.
    84. Shibata, T., et al., A RUTHERFORD BACKSCATTERING SPECTROSCOPIC STUDY OF THE ALUMINUM ANTIMONIDE OXIDATION PROCESS IN AIR. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1994. 33(4A): p. 1767-1772.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE