簡易檢索 / 詳目顯示

研究生: 蔡沛珊
Tsai, Pei-Shan
論文名稱: 回收矽粉再製矽酸鋰奈米材料
Preparation of LixSiOy Nanomaterials from Recycled Silicon.
指導教授: 江慧真
Chiang, Hui Jean
口試委員: 杜明進
Du, Ming-Chin
沈祥榮
Shan, S.R.
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用科學系所
Department of Applied Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 73
中文關鍵詞: 矽酸鋰偏矽酸鋰二氧化矽回收矽粉矽晶圓氫氧化鋰碳酸鋰高溫吸碳氚增殖劑氧化銪螢光材料
外文關鍵詞: Li2SiO3, LiOH, Solid state, Precipitation method, Eu2O3, Li2CO3, tritium-breeding material, Li8SiO6
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 世界上二氧化碳排放量越來越多,為了應對全球氣候系統暖化,國際社會提出了低碳經濟的新概念。矽酸鋰材料能在高溫下直接吸收二氧化碳並具有較高的吸收容量,而且在不同條件下具有吸收、放出二氧化碳之可逆性,為減少從高溫爐中排放二氧化碳之新途徑。除了可當高溫吸碳材料外,氚增殖劑材料、螢光材料等也是近來矽酸鋰材料備受矚目的應用。
    臺灣有許多的半導體工廠,生產晶圓時會產生許多的矽粉及報廢的晶圓,在此研究中我們將使用工廠所產生的矽淤泥及報廢的碎晶圓等回收矽做為合成矽酸鋰的矽源,與LiOH‧H2O進行水熱合成法及沉澱法加高溫燒結,希望能合成一系列Li2SiO3、Li4SiO4、Li8SiO6矽酸鋰奈米材料。此外,於自製之偏矽酸鋰(Li2SiO3)參雜入Eu3+進行螢光材料合成之應用。
    本研究合成之樣品將使用場效發射式掃描電子顯微鏡、X光粉末繞射儀分別觀察合成材料之表面形貌及進行物質成分分析鑑定,確定使用水熱法即可製備出Li2SiO3偏矽酸鋰奈米材料,晶粒大小於15nm~30nm之間。而經過高溫煅燒製備出Li2SiO3結晶性較佳,但晶粒大小則會增加至35-55nm。Li4SiO4矽酸鋰則須經過高溫煅燒才可合成,此研究中最佳合成條件為800℃ 3小時、900℃ 2小時將可獲得幾乎為純相的Li4SiO4。晶粒大小約40-110nm,其中以碎晶圓合成之晶粒大小略小於使用回收矽粉合成的Li4SiO4。
    最後PL檢測參雜Eu3+的偏矽酸鋰於230nm激發下,在波長綠光590nm、橘光612nm和紅光705nm處可見發射峰。


    During the past few decades, people use the fossil fuels to produce energy. The consequence of the use of fuels is the excessive emission carbon dioxide to the Earth's atmosphere, that creating the greenhouse effect. The lithium silicates use as high-temperature sorbents for carbon dioxide capture in an attempt to alleviate the consequences of global warming.
    For the preparation of lithium silicates nanomaterials from recycled silicon powder or broken silicon wafers and LiOH‧H2O by hydrothermal method only and precipitation method with calcine. Reactions were performed with different Li:Si molar ratios of 2, 4 and 8. The synthesized products were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). The obtained products were Li2SiO3, Li4SiO4. Li2SiO3 prepared by hydrothermal method and precipitation method with calcine. We could calculate dimension from XRD FWHM, and Dhkl= 15~55nm. Pure Li4SiO4 only prepared by precipitation method and calcined at 800℃ for 3 hours or 900℃ for 2 hours. Li4SiO4 nano thin film would be observed by precipitation method and calcined at 900℃ for 2 hours.
    Finally, the Li2SiO3 have been doped with Eu3+. PL emission spectrum of Eu3+ doped Li2SiO3 taken with excitation at the 230 nm, a number of sharp lines were observed at 590(green light)、612nm(orange light) and 705nm(red light).

    目錄 中文摘要 1 Abstract 2 目錄 3 表目錄 5 圖目錄 6 第一章 緒論 8 第二章 文獻回顧與研究目標 10 2-1 奈米材料簡介 10 2-2 矽酸鋰簡介 13 2-2.1 氚增殖劑材料 13 2-2.2 高溫吸二氧化碳材料 14 2-2.3 偏矽酸鋰螢光材料 15 2-3 矽酸鋰製備方法 17 2-3.1 固相反應法 Solid state method 17 2-3.2 溶膠凝膠法(Sol-gel method) 18 2-3.3 水熱合成法Hydrothermal method 20 2-3.4 沉澱法Precipitation method 20 2-4 研究目標 22 第三章 實驗 23 3-1 實驗試劑 23 3-2 實驗儀器及設備 24 3-3 奈米級矽酸鋰分析及鑑定 25 3-3.1 場效發射式掃描電子顯微鏡(FE-SEM) 26 3-3.2 X射線繞射光譜儀(XRD) 27 3-3.3 光致發光螢光光譜儀(PL) 29 3-4 實驗步驟 30 3-4.1 LixSiOy製備 31 3-4.1.1 沉澱法結合水熱法或高溫煅燒來製備Li2SiO3、Li4SiO4 31 3-4.1.2 固相反應法製備Li2SiO3、Li4SiO4 35 3-4.1.3 以沉澱法結合水熱合成法或高溫煅燒來製備Li8SiO6 36 3-4.2 參雜Eu3+製備Li2SiO3螢光材料應用 40 第四章 結果與討論 42 4-1 沉澱法製備偏矽酸鋰Li2SiO3粉體 42 4-2 沉澱法製備矽酸鋰Li4SiO4粉體 48 4-2.1 矽晶圓與氫氧化鋰合成Li4SiO4 48 4-2.2 回收矽粉與氫氧化鋰合成Li4SiO4 50 4-2.3 固相反應法合成Li4SiO4 52 4-3 Li8SiO6合成 57 4-4 Li2SiO3 參雜Eu3+螢光應用 64 第五章 結論 66 參考文獻 68 表目錄 表 1 試劑表 23 表 2 實驗儀器表 24 表 3 分析鑑定實驗儀器 25 表 4 以不同鋰矽比、矽源進行沉澱法結合水熱合成法及高溫煅燒 32 表 5 鋰矽比Li/Si=2合成之Li2SiO3粒徑大小 44 表 6 矽晶圓搭配鋰矽比Li/Si=4產物粒徑大小及產物百分比 49 表 7 回收矽粉搭配鋰矽比Li/Si=4產物粒徑大小及產物約略百分比 52 表 8 固相反應法搭配鋰矽比Li/Si=4產物粒徑大小 53 表 9 Li8SiO6第一段實驗參數與產物對照表 58 表 10 Li8SiO6第二段實驗參數與產物對照表 60 表 11 Li8SiO6第三段實驗參數與產物對照表 61 表 12 Li8SiO6第四段實驗參數與產物對照表 62 表 13 Li2SiO3參雜Eu3+產物粒徑大小 64 圖目錄 圖 1 增殖包層結構圖 13 圖 2 偏矽酸鋰參雜Eu3+的發射光譜(λex= 230 nm). 16 圖 3 偏矽酸鋰參雜Eu3+的激發光譜(λem= 612 nm). 16 圖 4 Li/Si-溫度(K) 系統相圖 17 圖 5 固相反應法製備多種鋰矽比之XRD分析圖 18 圖 6 溶膠凝膠法製備多種鋰矽比之XRD分析圖 19 圖 7 沉澱法製備多種鋰矽比之XRD分析圖 21 圖 8 FE-SEM儀器原理圖 26 圖 9 XRD儀器原理圖 27 圖 10 PL儀器原理圖 29 圖 11 LixSiOy製備流程圖 30 圖 12 沉澱法結合水熱合成法及沉澱法後再高溫煅燒流程圖 33 圖 13 高溫煅燒條件 34 圖 14 固相合成法流程圖 35 圖 16 分段煅燒條件一 37 圖 17 分段煅燒條件二 38 圖 15 Li8SiO6製備流程圖 39 圖 18 偏矽酸鋰參雜Eu3+流程圖 41 圖 19 鋰矽比Li/Si=2 進行沉澱法之XRD繞射圖譜 43 圖 20 Li2CO3與SiO2進行固相反應法之產物 44 圖 21 水熱合成法合成Li2SiO3粉體SEM影像 45 圖 22 煅燒後Li2SiO3粉體SEM影像 46 圖 23 Li/Si=4以矽晶圓為矽源之XRD繞射圖譜 50 圖 24 Li/Si=4回收矽粉為矽源之XRD繞射圖譜 51 圖 25 Li/Si=4固相合成法之XRD繞射圖譜 53 圖 26 Li4SiO4粉體SEM影像 56 圖 27 Li8SiO6第一段實驗XRD繞射圖譜 57 圖 28 Li8SiO6第二段實驗XRD繞射圖譜 59 圖 29 Li8SiO6第三段分段煅燒XRD繞射圖譜 61 圖 30 Li2SiO3、Li4SiO4合成Li8SiO6 XRD繞射圖譜 62 圖 31 Li2SiO3參雜Eu3+XRD繞射圖譜 64 圖 32 偏矽酸鋰參雜Eu3+的發射光譜(λex= 230 nm). 65

    參考資料
    [1]. Richard P. Feynman,”There's Plenty of Room at the Bottom.” , Engineering and Science, February 1960, Volume 23:5, Pages 22-36
    [2]. J. Charpin, F. Botter, M. Briec, B. Rasneur, E. Roth, N. Roux,”Investigation of γ lithium aluminate as tritium breeding material for a fusion reactor blanket “, Fusion Engineering and Design Volume 8, 1989, Pages 407-413
    [3]. C. E. Johnson, K. R Kummerer, E. Rote,” Ceramic breeder materials” , Journal of Nuclear Materials , 2 July 1988, Volumes 155–157, Part 1, Pages 188-201
    [4]. Yung Y. Liu, Michael C. Billone, A. K. Fischer, S. W. Tam, Robert G. Clemmer & Glenn W. Hollenberg ,” Solid tritium breeder materials-Li2O and LiAlO2:a data base review”, Fusion Technology, 1985, Volume 8, Pages 1970-1984
    [5]. C. E. Johnson, R. G. Clemmer, G. W. Hollenberg,” Solid breeder materials “, Journal of Nuclear Materials, 1981, Volume 103, Pages 547-553
    [6]. J. Jimenez-Becerril, P. Bosch, Silvia Bulbulian ,” Synthesis and characterization of γ-LiAlO2 “, Journal of Nuclear Materials 185, 1991, Pages 304-307
    [7]. Bo Zhang, Michél K. Nieuwoudt, Allan J. Easteal ,” Sol - Gel Route to Nanocrystalline Lithium Metasilicate Particles”, Journal of the American Ceramic Society, June 2008 Volume91, Issue6, Pages 1927-1932
    [8]. AntonNytén, Ali Abouimrane, Michel Armand, Torbjörn Gustafsson, John O. Thomas ,”Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material”, Electrochemistry Communications, February 2005, Volume 7, Issue 2, Pages 156-160
    [9]. Ramdas B. Khomane, Bijay K. Sharma, Sujan Saha, Bhaskar D. Kulkarni ,” Reverse Microemulsion Mediated Sol - Gel Synthesis of Lithium Silicate Nanoparticles Under Ambient Conditions:Scope for CO2 “, Chemical Engineering Science, May 2006, Volume 61, Issue 10, Pages 3415-3418
    [10]. K. Nakagawa, T. Ohashi ,” A novel method of CO2 capture from high temperature gases”, J. Electrochem. Soc. 1998, volume 145, issue 4, Pages 1344-1346
    [11]. Hugo A. Mosqueda, Carmen Vazquez, Pedro Bosch, and Heriberto Pfeiffer,” Chemical Sorption of Carbon Dioxide (CO2) on Lithium Oxide (Li2O)”, Chem. Mater. 2006, volume 18, issue 4, Pages 2307-2310
    [12]. Heriberto Pfeiffer, and Pedro Bosch ,” Thermal Stability and High-Temperature Carbon Dioxide Sorption on Hexa-lithium Zirconate (Li6Zr2O7) “, Chem. Mater., 2005, volume 17, issue 7, pages 1704–1710
    [13]. 一ノ赖升,尾崎義沼,賀集一郎 著,”超微顆粒導論 “, 1988 欧姆(オ-ム)出版社
    [14]. 張立德、牟季美著,”納米材料和納米結構”, 2001, 科学出版社
    [15]. Shimin Wang, Jianhong Zhao, Caojing Lu, Dinhua Bao, Haoshuang Gu, Guiyu Huang & Anxiang Kuang ,” Study of the reactions in preparing ultrafine KTN powders by sol—gel method “, Ferroelectrics ,1994, Volume 154, Issue 1, Pages 289-294
    [16]. Heriberto Pfeiffer, Pedro Bosch, Silvia Bulbuliarr,” Synthesis of lithium silicates”, Journal of Nuclear Materials, December 1998, Volume 257, Issue 3, Pages 309-317
    [17]. G. W. Hollenberg, H. Watanabe, I. J. Hastings, S. E. Berk ,” BEATRIX-II: A multinational solid breeder materials experiment”, Journal of Nuclear Materials, September 1992, Volumes 191–194, Part A, Pages 23-29
    [18]. 肖成建, 陈晓军, 康春梅, 汪小琳,”锂陶瓷氚增殖剂的中子辐照性能与产氚行为", 化学进展, 2011年9月第23卷第9期, 1906-1914頁
    [19]. 赵林杰,肖成建,陈晓军,龚宇,彭述明,龙兴,”固态氚增殖剂研究进展”, 核化學與放射化學, 2015年6月第37卷第3期, 129-142頁
    [20]. 朱德琼, 陈晓军, 彭述明,”固体氚增殖剂的制备及性能综述”, 材料导报, 2008年第22卷第9期, 72-76頁
    [21]. M. Kato, S. Yoshikawa, K. Nakagawa ,”Carbon dioxide ab-sorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations”, Journal of Materials Science Letter, March 2002, Volume 21, Issue 6, Pages 485–487
    [22]. M. Kato, K. Nakagawa.,” New series of lithium containing complex oxides, lithium silicates, for application as a high temperature CO2 ab-sorbent”, Journal of Ceramic Society of Japan, 2001, Volume 109 Issue 1275, Pages 911-914
    [23]. Kenji Essaki, M. Kato, Hideo Uemoto ,” Influence of temperature and CO2 concentration on the CO2 absorption properties of lithium silicate pellets”, Journal Materials Science, September 2005 , Volume 40, Issue 18, Pages 5017–5019
    [24]. 王银杰, 其鲁, 王祥云,” 高温下硅酸锂吸收 CO2 的研究”, 无机化学 学报, 2006年第22卷第2期, 268-272頁
    [25]. Kenji Essaki, Takehiko Muramatsu, M. Kato ,” Effect of equilibrium-shift by using lithium silicate in methane steam reforming “, International Journal of Hydrogen Energy, September 2008, Volume 33, Issue 17, Pages 4555-4559
    [26]. H.Migge ,”Estimation of free energies for Li8SiO6 and Li4SiO4 and calculation of the phase diagram of the Li-Si-O system. “, Journal of Nuclear Materials, January 1988, Volume 151, Issue 2, Pages 101-107
    [27]. A. Skokan, H. Wedemeyer, D. Vollath, E. Günther ,”THERMAL PROPERTIES AND APPLICATION OF POTENTIAL LITHIUM SILICATE BREEDER MATERIALS”, Fusion Technology 1986, Volume 2, pages 1255–1259
    [28]. Heriberto Pfeiffer, Pedro Bosch , Silvia Bulbulian ,”Synthesis of lithium silicates”, Journal of Nuclear Materials 257 1998, pages 309-317
    [29]. Abdolali Alemi, Shahin Khademinia, Mahboubeh Dolatyari and Akbar Bakhtiari,”Hydrothermal synthesis, characterization, and investigation of optical properties of Sb3+-doped lithium silicates nanoparticles”, International Nano Letters, MAY 2012 , Volume 2 , Number 2; Pages 1 – 9
    [30]. Y.P.Naik , M.Mohapatra , N.D.Dahale , T.K.Seshagiria, V.Natarajan, S.V.Godbole,” Synthesis and luminescence investigation of RE3+ (Eu3+, Tb3+ and Ce3+)-doped lithium silicate(Li2SiO3)”, Journal of Luminescence 129 , 2009, Pages 1225–1229
    [31]. 羅聖全, ” 研發奈米科技的基本工具之一 電子顯微鏡介紹 – SEM”, 小奈米大世界 2003
    [32]. 上泰儀器,”螢光光譜儀與分光光度計比較介紹” http://www.suntex.com.tw/UPLOAD/Documents/%E8%9E%A2%E5%85%89%E5%85%89%E8%AD%9C%E5%84%80%E8%88%87%E5%88%86%E5%85%89%E5%85%89%E5%BA%A6%E8%A8%88%E6%AF%94%E8%BC%83%E4%BB%8B%E7%B4%B9.pdf
    [33]. Rafael Rodrı´guez-Mosqueda and Heriberto Pfeiffer, “Thermokinetic Analysis of the CO2 Chemisorption on Li4SiO4 by Using Different Gas Flow Rates and Particle Sizes”, J. Phys. Chem. A 2010, 114, Pages 4535–4541
    [34]. Fernando Duran-Munoz, Issis C. Romero-Ibarra and Heriberto Pfeiffer,” Analysis of the CO2 chemisorption reaction mechanism in lithium oxosilicate (Li8SiO6): a new option for hightemperature CO2 capture” J. Mater. Chem. A, 2013, 1, Pages 3919-3925
    [35]. E. Carellan, M.T.Hernandez ,” High lithium content silicates: A comparative study between four routes of synthesis”, Ceramics International, August 2014, Volume 40, Issue 7, Part A, Pages 9499-9508
    [36]. Pablo R. Díaz-Herrera, Margarita J. Ramírez-Moreno, Heriberto Pfeiffer,” The effects of high-pressure on the chemisorption process of CO2 on lithium oxosilicate (Li8SiO6)”, Chemical Engineering Journal, 2015, Volume 264, Pages 10-15
    [37]. Yuhua Duan, David Luebke, Henry Pennline ,” Efficient Theoretical Screening of Solid Sorbents for CO2 Capture Applications”, Int. J. Clean Coal Energy, 2012, Volume 1, Pages 1–11

    QR CODE