簡易檢索 / 詳目顯示

研究生: 楊政哲
Yang, Cheng-Che
論文名稱: 以小角度散射研究DNA與陽離子型中代數樹狀體錯合之自組裝結構
Self-Assembled Structures of the Electrostatic Complex of DNA with Cationic Dendrimer of Intermediate Generation: Small Angle Scattering Study
指導教授: 陳信龍
Chen, Hsin-Lung
口試委員: 蘇安仲
曹正熙
蘇群仁
陳信龍
徐維隆
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 99
中文關鍵詞: 去氧核醣核酸樹狀體高分子小角度散射
外文關鍵詞: DNA, dendrimer, Small Angle X-ray Scattering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 樹狀體高分子具有可以被質子化的氨基,且在生理學上及酸性的環境中對於基因治療會和DNA產生具有靜電錯合力的巨陽離子,稱為”dendriplex”。在使用小角度X-ray散射和小角度中子散射的過程中,我們利用DNA和第四代的PAMAM dendrimer 在電荷密度與N/P的比例關係上建構相圖。當在固定nominal N/P比例的狀態下隨著dendrimer電荷密度增加,結構的轉變會從四面柱狀堆積轉變成DNA會以超螺旋形式存在的六角堆積,而最後在變成beads-on-string 結構。從相的轉變中,可以去了解到在DNA的結合自由能和決定於從釋放反離子中得到的熵的charge matching 中的自由能彼此之間的平衡關係。在固定dendrimer 電荷密度下,減少nominal N/P的比例會發現,效應會和增加dendrimer的電荷密度有一樣的效果 ; 也就是說當,在錯合體在處於較低的dendrimer 電荷密度下,有較高的DNA 彎曲率形成會頃向在較低的nominal N/P 比例。N/P比例的影響是歸因於系統頃向增加釋放反離子到水溶液中所得到的熵,藉由降低在水溶液中的free DNA 和dendrimer。實驗結果顯示,反離子的熵在DNA-dendrimer錯合物中扮演決定性的角色,而且此熵的貢獻來自於dendrimer的電荷密度,nominal N/P 比例,以及藉由在製備錯合物中,由DNA濃度和dendrimer的使用。進一步的了解反離子的熵是主要的角色並藉由質子化的酸來影響錯合物,在這邊使用的酸類包含多價酸類H2SO4和H3PO4。


    Polyamidoamine (PAMAM) dednrimer bearing well-defined number of amine groups can be protonated under physiological or acidic condition to generate the macrocations capable of forming electrostatic complex (called “dendriplex”) with DNA for gene delivery. Using small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS), here we constructed the morphological map of the complex of DNA with PAMAM dendrimer of generation four (G4) in terms of the dendrimer charge density and the nominal N/P ratio given by the feed molar ratio of dendrimer amine group to DNA phosphate group. With the increase of dendrimer charge density under a given nominal N/P ratio, the structure was found to transform from square columnar phase (in which the DNA chains packed in square lattice were locally straightened) to hexagonally-packed DNA superhelices (in which the DNA chains organizing in a hexagonal lattice twisted moderately into superhelices) and finally to beads-on-string structure (in which DNA wrapped around the dendrimer to form nuclesome-like array). The phase transition sequence was understood from the balance between the bending energy of DNA and the free energy of charge matching governed by the entropic gain from counterion release. Decreasing nominal N/P ratio under fixed dendrimer charge density was found to exert the same effect as increasing dendrimer charge density; that is, the structure with higher DNA curvature tended to form at lower nominal N/P ratio, in particular for the dendriplex with low dendrimer charge density. The effect of N/P ratio was attributed to the tendency of the system to increase the translational entropy of the counterions released to the bulk solution by reducing the concentration of free DNA or dendrimer remained in the solution. The experimental results presented here thus demonstrated the crucial role of counterion entropy in the structural formation of DNA-dendrimer complexes, and this entropic contribution was governed by the dendrimer charge density, the nominal N/P ratio, and the initial concentrations of DNA and dendrimer used for complex preparation. The dominant role of counterion entropy was further verified by examining the effect of protonic acid on the nanostructure of the dendriplex, where the dendrimer was also protonated by multivalent acids, including H2SO4 and H3PO4.

    Table of Contents Abstract………………………………………………………………………………i Table of contents……………………………………………………………………..iii List of Figures………………………………………………………………………..iv Chapter 1 Introduction and Literature Review………………………………………1 1.1DNA compaction……………………………………………………………..1 1.1.1 DNA compaction in nature: the structure of nucleosome, chromatin and chromosome ………………………………………………………………5 1.2 Compaction agents of DNA………………………………………………….15 1.2.1 multivalent cations and spermidine………………………………………...15 1.2.2 cationic lipids and lipsomes………………………………………………..22 1.2.3 cationic dendrimers………………………………………………………...25 1.3 Previous investigate ions of DNA -cationic dendrimer complexes…………..32 1.4 Research motivation and objectives………………………………………….39 Chapter 2 Experimental Section……………………………………………………...42 2.1 Materials……………………………………………………………………...42 2.2 Complex Preparations………………………………………………………..43 2.2.1 Effect of the charge density (dp), nominal N/P ratio and initial concentration of DNA…………………………………………………………………….43 2.2.2 Effect of the different type of acid…………………………………………43 2.3 Small Angle Neutron Scattering (SANS) Measurements……………………44 2.4 Small Angle X-ray Scattering (SAXS) Measurements………………………44 Chapter 3 Results and Discussion……………………………………………………46 3.1 The Three Distinct Types of Structure………………………………………..46 3.2 The Three Distinct Types of Structure……………………………………….49 3.2.1 Structure 1. Square Columnar Phase……………………………………….51 3.2.2 Structure 2. Hexagonally Packed DNA Superhelices……………………...54 3.2.3 Structure 3. Beads-on-String Structure…………………………………….57 3.2.4 Coexistence of SQ and HEXh Phases………………………………………61 3.2 Effect of Dendrimer Charge Density…………………………………………62 3.3 Effect of nominal N/P ratio…………………………………………………..71 3.4 The key role of counterion entropy…………………………………………..76 3.5 Effect of protonic acid………………………………………………………..82 Chapter 4 Conclusions……………………………………………………………….93 Chapter 5 References…………………………………………………………………95

    [1] Braun,E.; Eichen, Y.; Sivan, U.;Ben-Yoseph, G., Nature, 1998, 391, 775
    [2] Mao, C.; Sun, W.; Seeman, N.C., J. Am. Chem. Soc., 1999, 121, 5437
    [3] Eichman, J. D.; Bielinska, A. U.; Kukowska-Latallo, J. F.; Baker, J. R. PSTT, 2000, 3, 232..
    [4] Nagasaki Y, Wakebayashi D, Akiyama Y, Harada A, Kataoka K., ACS Polym
    Prepr (Div Polym Chem), 2000, 41, 1649
    [5]Harada A, Kataoka K. J Controlled Release, 2001, 72, 85
    [6]Harada A, Kataoka K. Science, 1999, 283, 65
    [7] Wasylyk, B.; Chambon, P. Eur. J. Biochem. 1979, 98, 317.
    [8] Felsenfeld, G. Nature 1992, 355, 219
    [9] Marieb, E. N.; Mallatt, J. Human Anatomy, chapter 2, 43, third edition.
    [10] Anatoly, A. Z.; Ning, C., J. Phys.: Condens. Matter, 2006, 18, R453
    [11] Olins, A. L.; Olins, D. E.; Science, 1974, 183, 330.
    [12] Kornberg, R. D. Science, 1974, 184, 868.
    [13] Lugar, K.; Mader, A. W.; Richmond, R. K.; Sargent, D. F.; Richmond, T. J. Nature, 1997, 389, 251.
    [14] Jeng, U. S.; Lin, T. L.; Lin, J. M.; Ho, D. L. Phys. B, 2006, 385-386, 865.
    [15] Baldwin, J. P.; Boseley, P. G.; Bradbury, E. M. Nature, 1975, 253, 245.
    [16] Richmond, T. J.; Davey, C. Nature, 2003, 423, 145.
    [17]Clark, D.J. & Kimura, T. (1990) J. Mol. Biol. 211, 883-896.
    [18] Jan bednar, Rachel A. Horowitz, Sergei A.Grigoryev, Proc. Nati. Acad. Sci., 1998, 95, 14173
    [19] Zlatanova, J.; Leuba, S. H.; van Holde, K. Biophys. J. 1998, 74, 2554.
    [20] Hudde, T.; Rayner, S. A.; Comer, R. M.; Weber, M.; Isaacs, J. D.; Waldmann, H.; Larkin, D. P. F.; George, A. J. T. Gene Ther 1999, 6, 939-943.
    [21] Eichman, J. D.; Bielinska, A. U.; Kukowska-Latallo, J. F.; Baker Jr, J. R. Pharmaceutical Science & Technology Today 2000, 3, (7), 232-245.
    [22] Manunta, M.; Tan, P. H.; Sagoo, P.; Kashefi, K.; George, A. J. T. Nucleic Acids Res. 2004, 32, 2730-2739.
    [23] Seib, F. P.; Jones, A. T.; Duncan, R. J Control Release 2007, 117, (3), 291-300.
    [24] Perumal, O. P.; Inapagolla, R.; Kannan, S.; Kannan, R. M. Biomaterials 2008, 29, 3469-3476.
    [25] Deng, R.; Yue, Y.; Jin, F.; Chen, Y.; Kung, H.-F.; Lin, M. C. M.; Wu, C. J Control Release 2009, 140, (1), 40-46.
    [26] Yue, Y.; Wu, C. Biomaterials Science 2013, 1, (2), 152-170.
    [27] Dai, Z. J.; Wu, C. Macromolecules 2012, 45, (10), 4346-4353.
    [28] Haxton, T. K.; Whitelam, S. Soft Matter 2012, 8, (13), 3558-3562.
    [29] Kostiainen, M. A.; Hiekkataipale, P.; Laiho, A.; Lemieux, V.; Seitsonen, J.; Ruokolainen, J.; Ceci, P. Nat Nano 2013, 8, (1), 52-56.
    [30] Koltover, I.; Salditt, T.; Safinya, C. R. Biophys J 1999, 77, (2), 915-924.
    [31] Nguyen T. T., Grosberg A. Yu., Shklovskii B. I., J. Chem. Phys.,2000, 113, 1110
    [32]DeRouchey J, Netz R R, Radler J O. Eur Phys J E, 2005, 16, 17
    [33] Wilson R. W., Bloomfield V. A., Biochemistry, 1979, 18, 2192
    [34] Manning G. S., Rev. Biophys. 1978, 11, 179
    [35] Juan Pelta,* Dominique Durand,# Jean Doucet,# and Fran9oise Livolant* ,Biophysical Journal Volume 71 July 1996 48-63
    [36] I. Koltover, T. Salditt, and C. R. Safinya , Biophysical Journal Volume 77 August 1999 915–924
    [37] Ewert, K. K.; Evans, H. M.; Zidovska, A.; Bouxsein, N. F.; Ahmad, A.; Safinya, C. R. J Am Chem Soc 2006, 128, (12), 3998-4006.
    [38] Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117-132.
    [39] Esfand, R.; Tomalia, D. A. Drug Discovery Today 2001, 6, 427-436.
    [40] Newkome, G. R. Advances in Dendritic Macromolecules, JAI Press: Greenwich,CT, 1993
    [41] Naylor, A. M.; Goddard, W. A.; Kiefer, G. E.; Tomalia, D. A. J. Am. Chem. Soc. 1989, 111, 2339-2341.
    [42] Tomalia, D. A.; Uppuluri, S.; Swanson, D. R.; Li, J. Pure Appl. Chem. 2000, 72, 2343-2358.
    [43] Tomalia, D. A. Chim. Oggi. 2005, 23, 41-45
    [44] Porcar, L.; Liu, Y.; Verduzco, R.; Hong, K. L.; Butler, P. D.; Magid, L. J.; Smith, G. S.; Chen,W. R. J. Phys. Chem .B 2008, 112, 14772-14778.
    [45] Li, T. F.; Hong, K.; Porcar, L.; Verduzco, R.; Butler, P. D.; Smith, G. S.; Liu, Y.; Chen, W. R. Macromolecules 2008, 41, 8916-8920.
    [46] Liu, Y.; Chen, C.-Y.; Chen, H.-L.; Hong, K.; Shew, C.-Y.; Li, X.; Liu, L.; Melnichenko, Y.B.;Smith, G. S.; Herwig, K. W.; Porcar, L.; Chen, W.-R. J. of Phys. Chem. Lett. 2010, 1, 2020-2024.
    [47] Nandy, B.; Maiti, P. K.; Bunker, A. J. of Chem. Theo. and Comput. 2012, 9, 722-729.
    [48] Fréchet, J.M.J.; Tomalia, D. A. ”Dendrimers and Other Dendritic polymers”, John Wiley & Sons, Ltd, 2001, 23
    [49] Naylor, A M.; Goodard III, W. A.; J. Am. Chem. Soc. 1989, 111, 2339
    [50] Prosa, T. J.; Bauer, B. J. ; Amis, E. J. Macromolecules, 2001, 34, 4897
    [51] Higgins, J.S.; Benoĩt, H.C. Polymers and Neutron Scattering, Clarendon Press, Oxford, 1994
    [52] Tomalia, D. A.; Naylor, A. M.; Goddard III, W. A. Angew. Chem., Int. Ed. Engl. 1990, 29, 138.
    [53] Van Duijvenbode, R. C.; Borkovec, M.; Koper, G. J. M. Polymer, 1998, 39, 2657.
    [54] Brothers II,H.M.; Piehler, L.T.; Tomalia, D.A. J.Chromatogr.,1998, A814, 233
    [55] Andreasson, B.; Nordenskiöld, L.; Schultz, J., Biophys. J., 1996, 70, 2847
    [56] Singh, P., Bioconjugate Chem., 1998, 9, 54
    [57] Liu, M.; Fréchet, J. M. J., Pharmaceut. Sci, Technol. Today, 1999, 2, 393
    [58] Zeng, F.; Zimmerman, S. C., Chem. Rev., 1997, 97, 1681
    [59] Bieniarz, C., Dendrimers: Applications to pharmaceutical and Medicinal Chemistry, 1998, 18, 55
    [60] Cakara, D.; Kleimann, J.; Borkovec, M. Macromolecules 2003, 36, 4201-4207.
    [61] Kukowska-Latallo, J. F.; Bielinska, A. U.; Johnson, J.; Spindler, R.; Tomalia, D. A.; Baker, J. R. PNAS 1996, 93, 4897-4902.
    [62] Morille, M.; Passirani, C.; Vonarbourg, A.; Clavreul, A.; Benoit, J. P. Biomaterials 2008, 29, 3477-3496.
    [63] Peng, S. F.; Su, C. J.; Wei, M. C.; Chen, C. Y.; Liao, Z. X.; Lee, P. W.; Chen, H. L.; Sung, H. W. Biomaterials 2010, 31, 5660-5670.
    [64] Su, C. J.; Chen, C. Y.; Lin, M. C.; Chen, H. L.; Iwase, H.; Koizumi, S.; Hashimoto, T. Macromolecules 2012, 45, 5208-5217.
    [65] Su, C. J.; Chen, C. Y.; Chen, H. L.; Ivanov, V. A. J. Phys. Conf. Ser. 2011, 272, 012002.
    [66] Liu, Y. C.; Chen, H. L.; Su, C. J.; Lin, H. K.; Liu, W. L.; Jeng, U. S. Macromolecules 2005, 38, 9434-9440.
    [67] Su, C. J.; Chen, H. L.; Wei, M. C.; Peng, S. F.; Sung, H. W.; Ivanov, V. A. Biomacromolecules 2009, 10, 773-783.
    [68] Chen, C. Y.; Su, C. J.; Peng, S. F.; Chen, H. L.; Sung, H. W. Soft Matter 2011, 7, 61-63.
    [69] Stryer, L. Biochemistry; W. H. Freeman and Company: SanFrancisco, 1981.
    [70] P. Debye, Ann. Physik., 1915, 46, 809–823.
    [71] Widom, J. Ann. Rev. Biophys. and Biomol. Str. 1998, 27, 285-327.
    [72] Ottaviani, M. F.; Furini, F.; Casini, A.; Turro, N. J.; Jockusch, S.; Tomalia, D. A.; Messori, L. Macromolecules 2000, 33, 7842-7851
    [73] Evans, H. M.; Ahmad, A.; Ewert, K.; Pfohl, T.; Martin-Herranz, A.; Bruinsma, R. F.; Safinya, C. R. Phys. Rev. Lett. 2003, 91, 075501.
    [74] Zhou, S. Q.; Liang, D. H.; Burger, C.; Yeh, F. J.; Chu, B. Biomacromolecules 2004, 5, 1256-1261.
    [75] Ewert, K. K.; Evans, H. M.; Zidovska, A.; Bouxsein, N. F.; Ahmad, A.; Safinya, C. R. J. Am.Chem. Soc. 2006, 128, 3998-4006.
    [76] Dootz, R.; Toma, A. C.; Pfohl, T. Soft Matter 2011, 7, 8343-8351.
    [77] Carnerup, A. M.; Ainalem, M. L.; Alfredsson, V.; Nylander, T. Soft Matter 2011, 7, 760-768.
    [78] Ainalem, M. L.; Nylander, T. Soft Matter 2011, 7, 4577-4594.
    [79] Mitra, A.; Imae, T. Biomacromolecules 2004, 5, 69-73
    [80] Porcar, L.; Hong, K. L.; Butler, P. D.; Herwig, K. W.; Smith, G. S.; Liu, Y.; Chen, W. R. J. Phys. Chem. B 2010, 114, 1751-1756.
    [81] Hamley, I. W. Macromolecules 2008, 41, 8948-8950.
    [82] Ray, J.; Manning, G. S. Macromolecules 1999, 32, 4588-4595.
    [83] Fenley, M. O.; Olson, W. K.; Manning, G. S. Macromolecules 2000, 33, 1899-1903.
    [84] Manning, G. S. Macromolecules 2007, 40, 8071-8081.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE