簡易檢索 / 詳目顯示

研究生: 劉芊良
論文名稱: 石墨烯為基材之複合材料於化學儲能及轉換系統之應用
Graphene-based Composite Materials in the Applications of Electrochemical Storage and Conversion Systems
指導教授: 胡啟章
口試委員: 張國興
白育綸
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 118
中文關鍵詞: 石墨烯氮摻雜超電容燃料電池
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用擁有大表面積、良好導電度和絕佳熱傳導性等各種優點的石墨烯與不同種類物質相互結合形成複合材料後,應用在超級電容器及氧氣還原方面。論文結果主要分為兩個部分。第一部分結果係利用一快速且簡單的實驗合成法製備石墨烯與錳氧化物的複合材料,並將其應用在超級電容器上。第二部分則是利用實驗設計法(DOE)分析將含氮化合物摻入石墨烯內所得到的氮摻雜石墨烯複合材料於何種實驗條件下,可以獲得接近2個電子轉移或是4個電子轉移的氧氣還原能力。以下將簡要地討論兩章所包含的內容。
    第一部分藉由微波輔助水熱法(MAHS)製備四氧化三錳(Mn3O4)與石墨烯(graphene)之奈米複合材料(nanocomposites),作為對稱型及非對稱型超級電容器之電極材料,並有系統地探討四氧化三錳(Mn3O4)含量對於複合材料的微結構及電化學表現之影響。此外,也利用掃瞄式電子顯微鏡(SEM)、X光繞射儀(XRD)及熱重量分析儀(TGA)分析複合材料的表面形貌、錳氧化物的結晶結構及複合材料中石墨烯(graphene)之含量。結果顯示,錳氧化物含量為82.4重量百分比的複合材料(GMn80)具有最佳的電容效果(~193 F/g),因而進一步利用此混合比例的複合材料作為測試對稱型及非對稱型超級電容器的電極材料。實驗結果可知,藉著組合由GMn80所做成的陰極電極與利用微波輔助水熱法合成的氮摻雜石墨烯做成的陽極電極而成的非對稱型超級電容器,擁有高達2V的操作電位窗,並能在24 A/g的電流密度下,展現11.11 Wh/kg的能量密度及23.5 kW/kg的功率密度。
    第二部分則同樣利用微波輔助水熱法(MAHS)製備氮摻雜石墨烯複合材料,並應用在氧氣還原上。由於金屬空氣電池和光電化學催化分解有機物的兩大重要應用下,我們透過實驗設計法(Design and analysis of Experiments, DOE)分析吡咯(Pyrrole)單體濃度(A)、微波功率(B)、微波反應溫度(C)和微波持溫時間(D)等四個實驗條件何者對於氧氣還原之電子轉移數目影響較大。實驗結果顯示,以微波功率(B)和微波反應溫度(C)最能夠影響氮摻雜石墨烯的氧氣還原效果。而在陡升實驗和陡降實驗當中,透過改變微波功率(B)和微波反應溫度(C)的條件,我們可以有效控制氮摻雜石墨烯的電子轉移數目從2.6至3.8,此結果對於需要進行2個電子轉移反應而產生雙氧水(H2O2)以光電化學催化有機物的應用和需要接近4個電子轉移反應的金屬空氣電池有很大助力。另外,透過X射線光電子能譜儀(XPS)分析,我們確定吡咯型的氮結構(pyrrolic-nitrogen structure)是影響氮摻雜石墨烯氧氣還原效果的主要因素。


    中文摘要 IV Abstract III Table of Contents VIII List of Figures XII List of Tables XVII Chapter 1 Introduction and Literature Review 1 1.1 Fundamentals of Electrochemistry 1 1.1.1 Electrochemical System and Reference Electrodes 1 1.1.2 Faradic and Non-faradic Processes 6 1.1.3 Electrochemical Cells and Reaction Rate 7 1.1.4 Factors Affecting Electrode Reaction Rate and Current 10 1.1.5 Factors Affecting Electrochemical System 11 1.2 Introduction of Microwave-assisted Hydrothermal/Solvothermal Synthesis (MAH/MAS) 12 1.3 Introduction of Design and Analysis of Experiments (DOE) 17 1.4 Brief Review of Graphene and its Applications 21 1.4.1 Introduction of Graphene: A Cutting-edge Material 21 1.4.2 Introduction of Manganese Oxide/Graphene 25 1.4.3 Introduction of Nitrogen-doped Graphene 31 1.4.3.1 N-doped Structures in Carbon Materials 31 1.4.3.2 N-doped Graphene as the Catalyst for ORR in Fuel Cells 32 1.5 Motives 36 Chapter 2 Experimental Methods 37 2.1 Chemicals and Instruments 37 2.1.1 Chemicals 37 2.1.1.1 Mn3O4/Graphene 37 2.1.1.2 Nitrogen-doped Graphene 38 2.1.2 Instruments 39 2.1.2.1 Mn3O4/Graphene 39 2.1.2.2 Nitrogen-doped Graphene 40 2.2 Graphite Substrate Pretreatments 41 2.3 Electrode preparation 41 2.4 Preparation of Graphite Oxide 42 2.5 Mn3O4/Graphene Composite Material 43 2.5.1 Preparation of Mn3O4/Graphene Composite Material 43 2.5.2 Preparation of N-doped Graphene 43 2.5.3 Material Characterization of Mn3O4/Graphene Composites 44 2.5.4 Electrochemical Analysis 44 2.6 Nitrogen-doped Graphene Composite Material 46 2.6.1 Preparation of Nitrogen-doped Graphene Composite Material 46 2.6.2 Material Characterization of Nitrogen-doped Graphene Composites 46 2.6.3 Electrochemical Analysis 46 Chapter 3 Mn3O4/graphene Composite Material 49 3.1 Introduction and Motive 49 3.2 Textural Analysis of Mn3O4/Graphene Composites 49 3.3 Effects of Different Mixing Ratio of Mn3O4/Graphene Composites on Electrochemical Performances 57 3.4 Performances of Symmetrical and Asymmetrical Supercapacitors 65 3.4.1 Performances of Symmetrical Supercapacitors 65 3.4.2 Performances of Asymmetrical Supercapacitors 68 3.5 Conclusions 72 Chapter 4 Nitrogen-doped Graphene Composite Material 73 4.1 Introduction and Motive 73 4.2 Design of Experiments for the application of Fuel Cells 75 4.2.1 Qualitatively descriptions for the RRDE responses of N-doped Graphene 75 4.2.2 Full factorial design 79 4.2.3 Path of the Steepest Ascent and Descent Study 90 4.3 Textural Analysis of Nitrogen-doped Graphene 93 4.4 Conclusions 96 Chapter 5 Conclusions and Future Work 97 5.1 Conclusions and Future Work of Mn3O4/graphene Composite Material 97 5.2 Conclusions and Future Work of Nitrogen-doped Graphene Composite Material 99 5.3 Future Work of Graphene-based Composite Material 100 References 101

    [1] A. J. Bard, L.R. Faulkner, John Wiley & Sons Inc: New York (2001).
    [2] 胡啟章, 五南圖書 (2002).
    [3] D. Pletcher, F.C. Walsh, Chapman and Hall Ltd (1990).
    [4] C.G. Zoski, Elsevier Science (2007).
    [5] B.E. Conway, Kluwer Academic/Plenum (1999).
    [6] B.L. Hayes, CEM (2002).
    [7] E.D. Neas, M.J. Collins, American Chemical Society (1988).
    [8] M. Taylor, B.S. Atri, S. Minhas, P. Bisht, Evalueserve (2005).
    [9] R.N. Gedye, F.E. Smith, K.C. Westaway, Can. J. Chem. 66 (1988) 17.
    [10] E.L. Nicholas, N.E. Leadbeater, CRC Press (2010).
    [11] D. Bogdal, Elsevier (2005).
    [12] G. E. P. Box, W. G. Hunter, J.S. Hunter, Wiely, New York (1978) 374-433.
    [13] A. K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183.
    [14] C. N. R. Rao, Kanishka Biswas, K. S. Subrahmanyam, A. Govindaraj, J. Mater. Chem. 19 (2009) 2457.
    [15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A.A. Firsov, Science 306 (2004) 666.
    [16] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E.A. Stach, R. D. Piner, S. T. Nguyen, R.S. Ruoff, Nature 442 (2006) 282.
    [17] C. Berger, et al., 312 (2006) 1191.
    [18] H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, A.F. Morpurgo, Nature 446 (2007) 56.
    [19] Y. Kopelevich, P. Esquinazi, Adv. Mater 19 (2007) 4559.
    [20] G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First, J.A. Stroscio, Science 317 (2007) 219.
    [21] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R.S. Ruoff, Nature 448 (2007) 457.
    [22] S. Gilje, S. Han, M. Wang, K. L. Wang, R.B. Kaner, Nano Lett. 7 (2007) 3394.
    [23] J. Wu, W. Pisula, K. Mullen, Chem. Rev. 107 (2007) 718.
    [24] J.L. Chang, K.H. Chang, C.C. Hu, W.L. Cheng, J.M. Zen, Electrochem. Commun. 12 (2010) 596.
    [25] Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu, G.Q. Shi, ACS Nano 4 (2010) 1963-1970.
    [26] W. J. Hong, Y. X. Xu, G. W. Lu, C. Li, G.Q. Shi, Electrochem. Commun. 10 (2008) 1555-1558.
    [27] Y. H. Ng, A. Iwase, A. Kudo, R. Amal, J. Phys. Chem. Lett. 1 (2010) 2607-2612.
    [28] S. Yang, X. Feng, S. Ivanovici, K. Mullen, Angew. Chem. 49 (2010) 8408-8411.
    [29] N. L. Yang, J. Zhai, D. Wang, Y. S. Chen, L. Jiang, ACS Nano 4 (2010) 887-894.
    [30] Y. Q. Sun, C. Li, Y. X. Xu, H. Bai, Z. Y. Yao, G.Q. Shi, Chem. Commun. 46 (2010) 4740-4742.
    [31] W. F. Wei, X. W. Cui, W. X. Chen, D.G. Ivey, Chem. Soc. Rev. 40 (2011) 1697-1721.
    [32] S.L. Suib, Acc. Chem. Res. 41 (2008) 479-487.
    [33] G. Zhu, H. Li, L. Deng, Z.H. Liu, Mater Lett 64 (2010) 1763-1765.
    [34] X. Zhang, P. Yu, Y. Chen, Y. Ma, Mater Lett 64 (2010) 583-585.
    [35] E.R. Stobbe, B.A. Boer, J.W. Genus, Catal. Today 47 (1999) 161-167.
    [36] Grootendorst E.J., Y. Verbeek, V. Ponce, J. Catal. 157 (1995) 706-712.
    [37] M.F.M. Zwinkels, S.G. Jaras, P.G. Menon, T.A. Griffin, Catal. Rev. Sci. Eng. 35 (1993) 319-358.
    [38] F. Zhang, X. G. Zhang, L. Hao, Mater. Chem. Phys. 126 (2011) 853-858.
    [39] S. Xing, Z. Zhou, Z. Ma, Y. Wu, Mater. Lett. 65 (2011) 517-519.
    [40] L. L. Chen, X. L. Wu, Y. G. Guo, Q. S. Kong, Y.Z. Xia, J. Nanosci. Nanotechnol. 10 (2010) 8158-8163.
    [41] J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Carbon 48 (2010) 3825-3833.
    [42] B. Wang, J. Park, C. Wang, H. Ahn, G. Wang, Electrochimica Acta 55 (2010) 6812-6817.
    [43] Z. S. Wu, D. W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, e. al., Adv. Funct. Mater. 20 (2010) 3595-3602.
    [44] S.K. Apte, S.D. Naik, R.S. Sonawane, B.B. Kale, N. Pavaskar, A.B. Mandale, B.K. Das, Mater. Res. Bull. 41 (2006) 647.
    [45] Y.C. Zhang, T. Qiao, X.Y. Hu, J. Solid State Chem. 177 (2004) 4093.
    [46] E. Finocchio, G. Busca, Catal. Today 70 (2001) 213.
    [47] M. Anilkumar, V. Ravi, Mater. Res. Bull. 40 (2005) 605.
    [48] C.B. Berthelin, D. Stuerga, J. Mater. Sci. 40 (2005) 253.
    [49] O.Yu. Gorbenko, I.E. Graboy, V.A. Amelichev, A.A. Bosak, A.R. Kaul, B. Guttler, V.L. Svetchnikov, H.W. Zandbergen, Solid State Commun. 124 (2002) 15.
    [50] H. L. Wang, L. F. Cui, Y. A. Yang, H. S. Casalongue, J. T. Robinson, Y. Y. Liang, Y. Cui, H.J. Dai, J. AM. CHEM. SOC. 132 (2010) 13978-13980.
    [51] D. Wang, Y. Li, Q. Wang, T. Wang, European Journal of Inorganic Chemistry 2012 (2012) 628-635.
    [52] X. Zhang, X. Sun, Y. Chen, D. Zhang, Y. Ma, Materials Letters 68 (2012) 336-339.
    [53] L. Li, Z. Guo, A. Du, H. Liu, Journal of Materials Chemistry 22 (2012) 3600.
    [54] J.W. Lee, A.S. Hall, J.-D. Kim, T.E. Mallouk, Chemistry of Materials (2012) 120221210712003.
    [55] K.H. Chang, Y.F. Lee, C.C. Hu, C.I. Chang, C.L. Liu, Y.L. Yang, Chem Commun (Camb) 46 (2010) 7957-9.
    [56] A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D. N. Futaba, H. Hatori, M. Yumura, S. Iijima, K. Hata, Adv. Mater. 22 (2010) 235.
    [57] T. Brousse, P. L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Bélanger, P. Simon, J. Power Sources 173 (2007) 633-641.
    [58] Y. G. Wang, Y.Y. Xia, Electrochem. Commun. 7 (2005) 1138.
    [59] P. C. Chen, G. Z. Shen, Y. Shi, H. T. Chen, C.W. Zhou, ACS Nano 4 (2010) 4403.
    [60] Z. S. Wu, W. Ren, D. W. Wang, F. Li, B. Liu, H.M. Cheng, ACS Nano 4 (2010) 5835.
    [61] Q. Qu, Y. Shi, L. Li, W. Guo, Y. Wu, H. Zhang, S. Guan, R. Holze, Electrochem. Commun. 11 (2009) 1325-1328.
    [62] T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, D. Bélanger, Appl. Phys. 82 (2006) 599-606.
    [63] E. Frackowiak, Physical Chemistry Chemical Physics 9 (2007) 1774.
    [64] K. Jurewicz, K. Babeł, A. Ziółkowski, H. Wachowska, Electrochimica Acta 48 (2003) 1491.
    [65] D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z. H. Zhu, G.Q. Lu, Adv. Funct. Mater. 19 (2009) 1800.
    [66] H. Wang, Q. Gao, J. Hu, Microporous and Mesoporous Materials 131 (2010) 89.
    [67] K. Jurewicz, K. Babeł, A. Ziółkowski, H. Wachowska, Journal of Physics and Chemistry of Solid 65 (2004) 269.
    [68] E. Frackowiak, G. Lota, J. Machnikowski, C. Vixguterl, F. Beguin, Electrochimica Acta 51 (2006) 2209.
    [69] W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, J. Huang, J. Yang, D. Zhao, Z. Jiang, Electrochem. Commun. 9 (2007) 569.
    [70] K. R. Lee, K. U. Lee, J. W. Lee, B. T. Ahn, S.I. Woo, Electrochem. Commun. 12 (2010) 1052.
    [71] M. Seredych, D. Hulicova-Jurcakova, G. Lu, T. Bandosz, Carbon 46 (2008) 1475.
    [72] K. Jurewicz, K. Babel, R. Pietrzak, S. Delpeux, H. Wachowska, Carbon 44 (2006) 2368.
    [73] F. Beguin, K. Szostak, G. Lota, E. Frackowiak, Adv. Mater 17 (2005) 2380.
    [74] D. Hulicova-Jurcakova, M. Seredych, G. Q. Lu, T.J. Bandosz, Adv. Funct. Mater. 19 (2009) 438.
    [75] G. Liu, X. Li, P. Ganesan, B.N. Popov, Applied Catalysis B: Environmental 93 (2009) 156.
    [76] J. Ozaki, N. Kimura, T. Anahara, A. Oya, Carbon 45 (2007) 1847.
    [77] L. Qu, Y. Liu, J. B. Baek, L. Dai, ACS Nano 4 (2010) 1321.
    [78] R. Kothandaraman, V. Nallathambi, K. Artyushkova, S.C. Barton, Applied Catalysis B: Environmental 92 (2009) 209.
    [79] R. Liu, D. Wu, X. Feng, K. Müllen, Angew Chem Int Ed Engl 49 (2010) 2565.
    [80] S. Maldonado, K.J. Stevenson, J. Phys. Chem. 109 (2005) 4707.
    [81] Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay, Y. Lin, J. Mater. Chem. 20 (2010) 7491.
    [82] Y. Bing, H. Liu, L. Zhang, D. Ghosh, J. Zhang, Chemical Society Reviews 39 (2010) 2184.
    [83] Z. Peng, H. Yang, Nano Today 4 (2009) 143.
    [84] C. Bezerra, L. Zhang, K. Lee, H. Liu, A. Marques, E. Marques, H. Wang, J. Zhang, Electrochimica Acta 53 (2008) 4937.
    [85] F. Cheng, J. Shen, W. Ji, Z. Tao, J. Chen, ACS Applied Materials & Interfaces 1 (2009) 460.
    [86] A. Pandolfo, A. Hollenkamp, J. Power Sources 157 (2006) 11.
    [87] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 323 (2009) 760.
    [88] T. Ikeda, M. Boero, S. F. Huang, K. Terakura, M. Oshima, J.I. Ozaki, J. Phys. Chem. 112 (2008) 14706.
    [89] H. Niwa, K. Horiba, Y. Harada, M. Oshima, T. Ikeda, K. Terakura, J. I. Ozaki, S. Miyata, J. Power Sources 187 (2009) 93.
    [90] H. Wendt, Electrochim. Acta 29 (1991) 1513-1525.
    [91] C.C. Hu, Y. T. Wu, K.H. Chang, Chem. Mater. 20 (2008) 2890-2894.
    [92] E. A. Muller, L. F. Rull, L. F. Vega, K.E. Gubbins, J. Phys. Chem. 100 (1996) 1189-1196.
    [93] T. Ohba, H. Kanoh, K. Kaneko, J. AM. CHEM. SOC. 126 (2004) 1560-1562.
    [94] M. Ocaña, Colloid Polym Sci 278 (2000) 443-449.
    [95] K. H. Chang, C.C. Hu, Chem. Mater. 19 (2007) 2112.
    [96] S. Komaba, A. Ogata, T. Tsuchikawa, Electrochem. Commun. 10 (2008) 1435.
    [97] S. Yoon, C. Lee, S. M. Oh, Y. K. Park, W.C. Choi, Journal of Non-Crystalline Solids 355 (2009) 252-256.
    [98] J.N. Broughton, M.J. Brett, Electrochim. Acta 50 (2005) 4814.
    [99] N. Nagarajan, M. Cheong, I. Zhitomirsky, Mater. Chem. Phys. 103 (2007) 47.
    [100] Y.K. Zhou, M. Toupin, D. Bélanger, T. Brousse, F. Favier, J. Phys. Chem. Solids 67 (2006) 1351.
    [101] D. P. Dubal, D. S. Dhawale, R. R. Salunkhe, S. M. Pawar, C.D. Lokhande, Applied Surface Science 256 (2010) 4411-4416.
    [102] T. P. Gujar, V. R. Shinde, C. D. Lokhande, W. Y. Kim, K. D. Jung, O.S. Joo, Electrochem. Commun. 9 (2007) 504.
    [103] T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier, D. Bélanger, Journal of The Electrochemical Society 153 (2006) 2171-2180.
    [104] E. Beaudrouet, A. Le Gal La Salle, D. Guyomard, Electrochimica Acta 54 (2009) 1240-1248.
    [105] S. Ardizzone, G. Fregonara, S. Trasatti, Electrochim. Acta 35 (1990) 263.
    [106] T. Liu, W.G. Pell, B.E. Conway, Electrochim. Acta 42 (1997) 3541.
    [107] K.H. Chang, Y.T. Wu, C.C. Hu, Transworld Research Network, Kerala, India (2006) 29-56.
    [108] K. Naoi, P. Simon, Interface 17 (2008) 34.
    [109] J.R. Miller, A.F. Burke, Interface 17 (2008) 53.
    [110] A. V. Murugan, T. Muraliganth, A. Manthiram, Chem. Mater. 21 (2009) 5004.
    [111] Y. H. Chu, K. H. Chang, C.C. Hu, Electrochimica Acta 61 (2012) 124-131.
    [112] D. Hulicova, J. Yamashita, Y. Soneda, H. Hatori, M. Kodama, Chemistry of Materials 17 (2005) 1241.
    [113] D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z. H. Zhu, G.Q. Lu, Advanced Functional Materials 18 (2009) 1800.
    [114] K. Y. Kang, S. J. Hong, B. I. Lee, J.S. Lee, Electrochemistry Communications 10 (2008) 1105.
    [115] S. Deng, G. Jian, J. Lei, Z. Hu, H. Ju, Biosensors and Bioelectronics 25 (2009) 373-377.
    [116] Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, ACS Nano 4 (2010) 1790-1798.
    [117] X. Xu, S. Jiang, Z. Hu, S. Liu, ACS Nano 4 (2010) 4292-4298.
    [118] N. Alexeyeva, E. Shulga, V. Kisand, I. Kink, K. Tammeveski, Journal of Electroanalytical Chemistry 648 (2010) 169-175.
    [119] D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, Energy & Environmental Science 4 (2011) 760-764.
    [120] D. Yu, E. Nagelli, F. Du, L. Dai, Journal of Physical Chemistry Letters 1 (2010) 2165-2173.
    [121] C. Bezerra, L. Zhang, K. Lee, H. Liu, A. Marques, E. Marques, H. Wang, J. Zhang, Electrochimica Acta 53 (2008) 4937-4951.
    [122] K. Otsuka, I. Yamanaka, Electrochimica Acta 35 (1990) 319-322.
    [123] I. Yamanaka, T. Onizawa, S. Takenaka, K. Otsuka, Angewandte Chemie International Edition 42 (2003) 3653-3655.
    [124] S. H. Cho, A. Jang, P. L. Bishop, S.H. Moon, Journal of Hazardous Materials 175 (2010) 253.
    [125] C. E. La Rotta H., E. D'Elia, E.P.S. Bon, Electronic Journal of Biotechnology 10 (2007) 24.
    [126] A. Wang, J. Qu, J. Ru, H. Liu, J. Ge, Dyes and Pigments 65 (2005) 227.
    [127] M. H. M. T. Assumpção, D. C. Rascio, J. P. B. Ladeia, R. F. B. De Souza, E. Teixeira Neto, M. L. Calegaro, R. T. S. Oliveira, I. Gaubeur, M. R. V. Lanza, M.C. Santos, International Journal of Electrochemical Science 6 (2011) 1586.
    [128] T. Iwazaki, R. Obinata, W. Sugimoto, Y. Takasu, Electrochemistry Communications 11 (2009) 376.
    [129] T. Iwazaki, H. Yang, R. Obinata, W. Sugimoto, Y. Takasu, Journal of Power Sources 195 (2010) 5840.
    [130] R. Liu, D. Wu, X. Feng, K. Mullen, Angewandte Chemie International Edition 49 (2010) 2565.
    [131] C. V. Rao, C. R. Cabrera, Y. Ishikawa, Journal of Physical Chemistry Letters 1 (2010) 2622.
    [132] K. R. Lee, K. U. Lee, J. W. Lee, B. T. Ahn, S.I. Woo, Electrochemistry Communications 12 (2010) 1052.
    [133] Z. Chen, D. Higgins, H. Tao, R. S. Hsu, Z. Chen, Journal of Physical Chemistry C 113 (2009) 21008.
    [134] L. T. Qu, Y. Liu, J. B. Baek, L.M. Dai, ACS Nano 4 (2010) 1321-1326.
    [135] D. S. Yu, Q. Zhang, L.M. Dai, J. AM. CHEM. SOC. 132 (2010) 15127-15129.
    [136] L. Zhang, Z. Xia, The Journal of Physical Chemistry C (2011) 11170-11176.
    [137] S. Maldonado, K.J. Stevenson, Journal of Physical Chemistry B 109 (2005) 4707.
    [138] S. Kundu, et al., Journal of Physical Chemistry C 113 (2009) 14302.
    [139] Y. Fu, Z. D. Wei, S. G. Chen, L. Li, Y. C. Feng, Y. Q. Wang, X. L. Ma, M. J. Liao, P. K. Shen, S.P. Jiang, Journal of Power Sources 189 (2009) 982-987.
    [140] Y. H. Lee, K. H. Chang, C.C. Hu, J. Power Sources 227 (2013) 300-308.
    [141] M.S. El-Deab, T. Ohsaka, Journal of The Electrochemical Society 153 (2006) A1365.
    [142] E.J. Biddinger, D.v. Deak, D. Singh, H. Marsh, B. Tan, D.S. Knapke, U.S. Ozkan, Journal of The Electrochemical Society 158 (2011) B402.
    [143] C.C. Hu, G.L. Lee, J. Taiwanese Inst. Chem. Engrs. 37 (2006) 589.
    [144] C. C. Hu, Y. D. Tsai, C. C. Lin, G. L. Lee, S. W. Chen, T. C. Lee, T. C. Wen, J. Alloys Compd. 472 (2009) 121.
    [145] G.E.P. Box, W.G. Hunter, J.S. Hunter, Statistics for Experiments, J. Wiley & Sons, New York, 1978.
    [146] K.H. Chang, Y. F. Lee, C.C. Hu, C. I. Chang, C. L. Liu, Y.L. Yang, Chem. Commun. 46 (2010) 7957.
    [147] E. J. Biddinger, D. V. Deak, D. Singh, H. Marsh, B. Tan, D. S. Knapke, U.S. Ozkan, Journal of The Electrochemical Society 4 (2011) 402-409.
    [148] D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z.H. Zhu, G.Q. Lu, Adv. Func. Mater. 19 (2009) 1800.
    [149] T. Rufford, D. Hulicovajurcakova, Z. Zhu, G. Lu, Electrochem. Commun. 10 (2008) 1594.
    [150] M. Seredych, D. Hulicovajurcakova, G. Lu, T. Bandosz, Carbon 46 (2008) 1475.
    [151] S. Y. Yang, K. H. Chang, Y. L. Huang, Y. F. Lee, H. W. Tien, S. M. Li, Y. H. Lee, C. H. Liu, C. C. M. Ma, C.C. Hu, Electrochem. Commun. 14 (2012) 39.
    [152] Y. H. Lee, F. Li, K. H. Chang, C. C. Hu, T. Ohsaka, Appl. Catal. B: Environ. 126 (2012) 208.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE