簡易檢索 / 詳目顯示

研究生: 范綱桓
Kang-Huan Fan
論文名稱: 直序式分碼多工系統下非高斯雜訊的估測
Non-Gaussian Noise Detection in DS-CDMA
指導教授: 黃建華
Chien-Hwa Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 84
中文關鍵詞: 非高斯分碼多工估測
外文關鍵詞: Non-Gaussian, Detection, CDMA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    直序式分碼多工 (Direct sequence-code division multiple access, DS-CDMA) 系統在蜂巢式行動電話系統被廣泛的研究。在此篇論文裡,特別討論DS-CDMA的系統在受到非高斯雜訊干擾時,因為信號在傳輸過程中受到脈衝雜訊 (impulse noise) 干擾的影響,導致在接收端的信號無法正常還原的問題,而通常脈衝雜訊為人為的電磁波干擾或大量自然界中所產生的雜訊,經由實驗證實此種脈衝雜訊為一非高斯雜訊分佈,所以我們進而利用在 [4] 中的一種高斯混合型的模型,是利用兩種變異數不同的高斯雜訊所組合而成的,來去模擬出信號在傳輸的過程中所受到的非高斯雜訊。
      在這裡我們將在接收端的部分使用一些方法,來估測還原出原來的訊號,有利用遞迴的動作來壓抑雜訊的估測器,如線性解相關器least square (LS) 、M解相關估測器 (Minimax decorrelating detector) 或者是利用在統計的觀點,將受到雜訊干擾過於嚴重的資料視為離群值(outlier),找出並加以去除的方法,如最小平方中位數法least median of square (LMedS)、重複再加權最小平方法reweighted least square (RLS)、逐次平均去除法consecutive mean excision (CME) 、順向逐次平均去除法forward consecutive mean excision (FCME) 等,來解決脈衝雜訊影響系統的問題,並且進行系統的程式模擬來比較各種估測器的效能表現。
      另外,我們將簡化各種方法的複雜度運算來得到新的方法:如改善LMedS和RLS過於複雜的問題以及找出CME 與 FCME的效能上限,並且利用M-estimator [4] 的分析方法,比較出各種方法的效能在理論上的差異性,以及算出各種的估測器運算複雜度,找出一個低複雜度高效能的方法。


    Abstract

    Direct sequence-code division multiple access (DS-CDMA) has been extensively investigated in the cellular mobile telephone system. In this thesis, we discuss non-Gaussian noise effect to the DS-CDMA system. Because the signal is influenced by the impulse noise in the course of transmitting, the signal cannot return to original signal at receiver. The impulse noise is usually due to the human-made electromagnetic interference and a large number of natural noise as well. It is known through experiment measurements to be a non-Gaussian distribution. And then we can exploit a Gaussian mixture model in [4], it is composed of two kinds of Gaussian distribution which have different variance. So we can use the mixture model to attain the impulse noise which affects the transmitted signal.
    We will use some methods to estimate the original signal in the receiver. There are some estimators that use iteration to suppress the impulse noise, least square and minimax decorrelating detector, etc. In statistics, there are also some estimators, for instance, least median of square (LMedS), reweighted least square (RLS), consecutive mean excision (CME) and forward consecutive mean excision (FCME). Those methods let the signals be an outlier and cancel them when they are interfered seriously. All of those methods want to solve the impulse noise problem in the system and we will use simulation program to compare the performance of all estimators.
    We will also simplify the complexity operation of different methods to obtain the new method here. Such as, our proposed methods improve the overly complicated problem in LMedS and RLS. The performance upper bound of CME and FCME are found by our proposed method. Using the method of M-estimator [4], we analyze all methods and compare the performance of different methods analytically. In the end, we compute the complexity operation of all estimators. So we can find a low complexity and high performance method.

    目錄 摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 viii 表目錄 x 第一章 導論 1 1.1 文獻探討 1 1.2 研究動機 2 第二章 影響回歸估測的因素 4 2.1 回歸分析 (Regression Analysis): 4 2.2 離群值 (Outlier) 6 2.3 崩潰點 (Breakdown Point) 8 2.4 影響函數 (Influence Function) 10 第三章 回歸估測器 11 3.1 Least - Squares 解相關器: 11 3.2多用戶檢測器M-Estimator 13 3.3 Minimax強健式解相關器 14 3.4 Least Median of Squares 估測器 17 3.4.1 Least Median of Squares 17 3.4.2 維度為一的特殊情形 19 3.4.3 用LMedS找出資料集中點 20 3.4.4 LMedS實際操作 22 3.4.5 Reweighted Least Squares 24 3.5 Consecutive Mean Excision and Forward Consecutive Mean Excision 26 3.5.1 CME估測器: 27 3.5.2 FCME估測器: 28 第四章 系統模型 30 4.1 系統模型: 30 4.2 估計雜訊模型參數 33 4.3 資料集中點 34 4.4 LMedS的模擬分析 37 4.4.1 簡化LMedS 37 4.4.2 各種LMedS的比較 39 4.5 RLS模擬分析 43 4.5.1 各種的LMedS與RLS的比較 43 4.5.2 各種RLS之間的比較 46 4.6 CME & FCME的效能上限 50 4.6 所有方法的模擬比較分析 56 第五章 分析方法 62 5.1 漸近錯誤率 (Asymptotic Probability of Error) 62 5.2 各種估測器的ψ方程式 63 5.2.1 LS解相關器 63 5.2.2 Minimax解相關器 63 5.2.3 RLS估測器 64 5.2.4 CME & FCME估測器 65 5.2.5 分析結果 65 5.3 複雜度 69 5.3.1 LS估測器 70 5.3.2 Minimax估測器 71 5.3.3 維度為一的RLS估測器: 72 5.3.4 RLSeasy2估測器: 74 5.3.4 CME估測器: 74 5.3.4 FCME估測器: 79 5.3.5 所有方法的複雜度比較 79 第六章 結論 81 參考文獻 83

    參考文獻

    [1] F.R. Hampel et al, “Robust statistics:the approach based on influence functions,” Wiley, New York, 1986
    [2] P.J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection. John Wiley & Sons, New York, 1987
    [3] P.J. Huber, Robust Statistics. New York: Wiley, 1981.
    [4] X. Wang and H. Vincent poor, Wireless Communication Systems. Upper Saddle River, N.J. Prentice Hall PTR, c2004.
    [5] A.P. Tirumalai, B.G. Schunck, and R.C. Jain, “Dynamic stereo with self-calibration,” Pattern Analysis and Machine Intelligence, IEEE Transactions on Volume 14, Issue 12, Dec. 1992
    [6] W.R. Thompson, “On a criterion for the rejection of observations and the distribution of the ratio of deviation to sample standard deviation,” The Annals of Marhematical Srarisrics. vol. 6, no. 4, pp. 214-219, Dec. 1935.
    [7] H. Saarnisaari, “Consecutive mean excision algorithms in narrowband or short time interference mitigation,” Centre for Wireless Communications BO Pox 4500, 90014 University of Oulu Finland
    [8] P. Henttu and S. Aromaa, “Consecutive mean excision algorithm,” In Proceedings of the IEEE international Symposium on Spread Spectrum Techniques and Applications, Prague, Czech Republic, 2002, vol. 2/3, pp. 450~454
    [9] D. Jitsukawa and R. Kohno, “Adaptive multi-user equalizer using multi-dimensional lattice filter for DS-CDMA,” IEEE 1996
    [10] H. Saarnisaari and P. Henttu, “Impulse detection and rejection methods for radio systems”, in Proceedings of the IEEE Military Communications Conference, 2003, CD-rom.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE