研究生: |
林韋辰 Lin, Wel-Chen |
---|---|
論文名稱: |
氫/空氣層流預混氣流於平行絕熱催化性白金壁面之實驗 Experiments on Laminar Premixed Hydrogen/Air Flow over Parallel Adiabatic Catalytic Platinum Walls |
指導教授: |
王訓忠博士
Dr. Wong, Shwin-Chung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 36 |
中文關鍵詞: | 氫氣 、白金 、觸媒燃燒 、催化性壁面 、催化性側壁 |
外文關鍵詞: | catalytic combustion, hydrogen, Pt, platinum, catalytic wall |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文對於氫/空氣預混層流燃氣與白金催化近似絕熱側壁之反應進行研究。白金催化性側壁為兩個平行相距1cm的電鍍白金鈦板,在兩平行板所圍成的區間兩側,用石英板隔絕外界空氣的影響並方便觀察。之後通入不同當量比(Φ=1.0、0.5、0.35、0.15)、進口流速(uin=0.2、0.27、0.43、0.59 m/s)等不同條件的預混燃氣,待其反應建立穩定的溫度場後,利用S-type的熱電偶量取燃氣流場及板面的溫度分佈。結果發現,白金對氫氣預混燃氣的催化效應在常溫常壓下就可進行,並且在相同的燃氣進口流速下,當量比越高則壁面及流場溫度分佈會越高;在相同的當量比時,燃氣的進口速度越快時溫度分佈較高;若以相同的氫氣體積流量來看,則整體燃氣流速慢(即當量比高)時溫度分佈較高。另外在低當量比時(Φ=0.15),不管進口流速如何,平均壁溫會較低,且壁溫會沿燃氣流向緩緩增加,而較高當量比時(Φ=1.0),平均壁溫較高,但壁溫也會沿燃氣流向增加,兩者原因有所不同,其詳細說明如內文所示。
另外當量比在0.35和0.5時,壁溫卻是在進口約10mm處最高,較下游部分的壁溫便會緩緩下降,這結果與文獻所提之結果相似。若比較不同燃氣條件的結果發現,對於氫氣之壁面催化反應當量點可能在燃氣當量比介於0.35和0.5之間,此結果與文獻中所提的表面反應當量點在Φ∼4之結果相符。
[1] Hayes, R.E. and Kolaczkowski, S.T., “Introduction to catalytic combustion,” Text Book Gordon & Breach Science Publishers 681 pp ISBN: 90-5699-092-6, (1997)
[2] Davy, H., “Some New Experiments and Observations on The Combustion of Gaseous Mixtures,” The Collected Works of Sir Humphrey Davy (J. Davy Ed.), Vol.Ⅵ, Smith, Elder and Co. Cornhill London, (1840).
[3] 趙怡欽, 許紘瑋, “觸媒燃燒”, 燃燒季刊38期Vol.11 No.2 Page12-30(2002).
[4] Pfefferle, W. C. and Pfefferle, L. D.,“Catalytically Stabilized Combustion,”Prog. Energy Combust. Sci., Vol.12, pp.25-41 (1986).
[5] Arai, H., and Machida, M., “Recent Progress in High-Temperature Catalytic Combustion,” Catalysis Today 10 pp.81-94 (1991).
[6] Schefer, R. W., Robben, F., and Cheng, R. K., “Catalyzed Combustion of H2/Air Mixtures in a Flat-Plate Boundary Layer:ⅠExperimental Results,” Combustion and Flame 38:51-63 (1980).
[7] Schefer, R. W., “Catalyzed Combustion of H2/Air Mixtures in a Flat-Plate Boundary Layer:ⅡNumerical Model,” Combustion and Flame 45:171-190 (1982).
[8] Brown, N. J., Schefer, R. W. and Robben, F., “High-Temperature Oxidation of H2 on a Platinum Catalyst,” Combustion and Flame 51:263-277 (1983).
[9] Bui,P. A., Vlachos, D. G. and Westmoreland, P. R., “Homogeneous Ignition of Hydrogen-Air Mixtures over Platinum,” Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, 1996, pp.1763-1770.
[10] Fernandes, N. E., Park, Y. K., and Vlachos, D. G. ,“The Autothermal Behavior of Platinum Catalyzed Hydrogen Oxidation: Experiment and modeling,” Combustion and Flame 118: 164-178 (1999).
[11] Appel , C., Mantzaras, J., Schaeren, R., Bobach, R., Inauen, A., Kaeppeli, B., Hemmerling, B. and Stampanoni, A.,“An Experimental and Numerical Investigation of Homogeneous Ignition in Catalytically Stabilized Combustion of Hydrogen/Air Mixtures Over Platinum,” Combustion and Flame 128:340-368 (2002).
[12] Warnatz, J., Dibble, R. W. and Maas, U., Combustion, Physical and Chemical Fundamentals, Modeling andPhysical and Chemical Fundamentals, Modeling andSimulation, Springer-Verlag, New York, 1996.
[13] Deutschmann, O., Schmidt, R., Behrendt, F. and Warnatz, J., “Numerical Modeling of Catalytic Ignition,” Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, 1996, pp.1747-1754.
[14] Dupont, V., Moallemi, F., Williams, A. and Zhang S.-H., “Combustion of Methane in Catalytic Honeycomb Monolith Burners,” Int. J. Energy Res. 2000; 24:1181-1201. John Wiley & sons, Ltd.
[15] Dupont, V., Zhang, S. H., Bentley, R. and Williams, A., “Experimental and modeling studies of the catalytic combustion of menthan,” Fuel 81 (2002) 799-810.
[16] Seo, Y. S., Cho, S. J., Kang, S. K. and Shin, H. D., “Experimental and numerical studies on combustion characteristics of a catalytically stabilized combustion,” Catalysis Today, Vol.59, pp.75-86 (2000).
[17] Wierzba, I. and Depiak, A., “Catalytic oxidation of lean homogeneous mixtures of hydrogen/hydrogen-mathane in air,” International Journal of Hydrogen Energy 29 (2004) 1303-1307.
[18] Deutschman, O., Maier, L. I., Riedel, U., Stroemman, A. H. and Dibble, R. W. “Hydrogen assisted catalytic combustion of methane on platinum,” Catalysis Today, Vol.59, pp.141-150 (2000).
[19] Boehman, A. L. and Dibble, R. W., “Experimental and numerical investigation on the influence of temporal fuel/air unmixedness on NOX emissions of lean premixed catalytically stabilized and non-catalytic combustion,” Catalysis Today, Vol.59, pp.131-140 (2000).
[20] Eguchi, K. and Arai, H., “Recent Advances in High Temperature Catalytic Combustion,”Catalysis Today 12 pp.51-65 (1996).
[21] Vaillant, S. R., and Gastec, A. S., “Catalytic combustion in a domestic natural gas burner,” Catalysis Today 47 pp.415-420 (1999).
[22]Kesselring, J. P.,“Catalytic Combustion,”in Advanced Combustion Method, ed. By Weinberger, pp.237-257 (1986).
[23] Aghalayam, P., Bui, P. A. and Vlachos, D. G., “The role of radical wall quenching in flame stability and wall heat flux: hydrogen-air mixtures,” Combust. Theory Modeling 2 (1998) 515-530.
[24]Andrae, J., Bjornbom, P. and Edsberg, L., “Numerical Studies of Wall Effects with Laminar Methane Flames,” Combustion and Flame 128:165-180 (2002).
[25] Kent, J. H., “A Noncatalytic Coating for Platinum-Rhodium Thermocouples,” Combustion and Flame 14:279-282, (1970).
[26] Peterson, R. C. and Laurendeau, N. M., “Emittance of Yttrium-Beryllium Oxide Thermocouple Coating,” Combustion and Flame 60:279-284 (1985).
[27] Aung, K. T., Hassan, M. I. and Faeth, G. M., “Flame Stretch Interaction of Laminar Premixed Hydrogen/Air Flames at Normal Temperature and Pressure,” Combustion and Flame 109:1-24 (1997).