研究生: |
游傑安 You, Jie-An |
---|---|
論文名稱: |
以記憶體儲存之突觸可塑性電路實現 The Implementation of Synaptic Plasticity Circuit by Memory |
指導教授: |
陳新
Chen, hsin |
口試委員: |
彭盛裕
Peng, Sheng-Yu 金雅琴 King, Ya-Chin |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 電阻式記憶體 、仿生神經突觸 、類神經網路 |
外文關鍵詞: | Resistive random access memory, Artificial Synapse, Neural network |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人工智慧是時下最熱門的話題之一,不論是汽車、醫療、或是金融等產業,都能夠跟AI一詞有所聯繫。而其中的類神經網路,便是將電腦系統以仿人類大腦的方式進行運算。相比傳統的電腦,人腦擁有強大的學習及推理判斷的能力,不論是圖像或是語音的認知能力都是電腦遠比不上的。因此,研究低功耗、並能平行且大量運算的類神經網路,便是值得深入的主題。
在類神經網路中,神經元間的突觸連結強度被認為與記憶和學習有極大的關係。本論文主要是在研究透過運用記憶體電路的方式,實現類神經網路中的突觸,以調變突觸連結強度及儲存調變的結果。論文共分為前後兩大部分。前半部分是在量測及探討特殊元件,接觸點電阻式記憶體是否適合當作類比式仿突觸記憶體。但後來因量測結果不慎理想,並且其調變電路在28nm製程的下線因設計規範驗證(DRC)問題而不被接受,故轉為使用靜態隨機存取記憶體設計權重儲存及更新電路,運用在我們小組設計的突波式神經晶片系統中。
Artificial intelligence is one of the hottest topics nowadays. Whether it is automotive, medical, or financial, it can be related to the word AI. The neural network is to operate the computer system in a way that mimics the human brain. Compared with traditional computers, the human brain has a strong ability to learn and infer, and the ability to recognize images or voices is far from being comparable to computers. Therefore, it is worthwhile to study the neural network that is low power consumption and can do large number of operations parallelly.
In neural network, strength of synaptic connections are considered to be related to learning and memory. This thesis aims to implement synaptic plasticity circuit by memory, which can adjust the strength of synaptic connections and store the results. The former part of this thesis focuses on the measurement and discuss CRRAM, to know if it is possible to be an analog synaptic device. But the measurement results seem not great, and the tapeout of the programming circuit of CRRAM is not accepted, which is caused by DRC errors. As a result, we design SRAM circuit to store weight value and execute weight update, which is in our SNN neuromorphic chip.
[1] Anping Huang, Xinjiang Zhang, Runmiao Li and Yu Chi “Memristor Neural Network Design” Memristor and Memristive Neural Networks, pp. 249–281
[2] Javier del Valle, Juan Gabriel Ramirez, Marcelo J. Rozenberg and Ivan K. Schuller “Challenges in Materials and Devices for Resistive-Switching-based Neuromorphic Computing”
[3] Yang Dan and Mu-ming Poo “Spike Timing-Dependent Review Plasticity of Neural Circuits” Neuron, Vol. 44, 23–30, September 30, 2004
[4] Stewart, D. R. et al. “Molecule-independent Electrical Switching in Pt/organic monolayer/Ti Devices. ” Nano Lett. 4, 133–136 (2004)
[5] Ligang Gao, I-Ting Wang, Pai-Yu Chen, Sarma Vrudhula, Jae-sun Seo, Yu Cao, Tuo-Hung Hou and Shimeng Yu “Fully Parallel Write/Read in Resistive Synaptic Array for Accelerating on-chip Learning,” Nanotechnology, vol. 26,no. 45, p. 455204, 2015
[6] Wen Chao Shen, Chin Yu Mei , Y. -D. Chih, Shyh-Shyuan Sheu, Ming-Jinn Tsai, Ya-Chin King, Chrong Jung Lin “High-K Metal Gate Contact RRAM (CRRAM) in Pure 28nm CMOS Logic Process” IEDM Tech. Dig, p.745. 2012
[7] Victor Khomenko, Andrey Mokhov, Danil Sokolov, Alex Yakovlev “ Formal Design and Verification of an Asynchronous SRAM Controller ” 2017 17th International Conference on Application of Concurrency to System Design
[8] Bartolozzi, C; Indiveri, G “ Synaptic Dynamics in Analog VLSI ” Neural Comput., vol. 19, no. 10, pp. 2581–2603, Oct. 2007.
[9]Bernabé Linares-Barranco, Teresa Serrano-Gotarredona , IEEE, and Rafael Serrano-Gotarredona “Compact Low-Power Calibration Mini-DACs for Neural Arrays With Programmable Weights ” IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003
[10] AHidehiro Fujiwara, Koji Nii, Junichi Miyakoshi, Yuichiro Murachi, Yasuhiro Morita,Hiroshi, Kawaguchi, Masahiko Yoshimoto “ Two-Port SRAM for Real-Time Video Processor Saving 53% of Bitline Power with Majority Logic and Data-Bit Reordering ” ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design, Oct. 2006
[11] Bernhard Wicht, Thomas Nirschl, and Doris Schmitt-Landsiedel,“ Yield and Speed Optimization of a Latch-Type Voltage Sense Amplifier ” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 7, JULY 2004
[12] B. Nessler, et al., "Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity," Plos Computational Biology, vol. 9, Apr 2013.
[13] Izhikevich, E. M., "Which Model to Use for Cortical Spiking Neurons?," IEEE Transactions on Neural Networks, vol.15, no. 5, pp. 1063-1070, 2004.