研究生: |
賴英煌 Ying-Huang Lai |
---|---|
論文名稱: |
烷硫醇於Cu(110)與Si(100)表面的化學反應-吸附及熱分解反應 Adsorption and Thermal Decomposition of Alkanethiols on Cu(110) and Si(100) Surfaces |
指導教授: |
葉君棣 教授
Chuin-Tih Yeh 洪偉修 博士 Wei-Hsiu Hung |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 烷硫醇 、光電子能譜 、程溫脫附法 、吸附 、熱分解 |
外文關鍵詞: | alkanethiol, X-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD), adsorption, thermal decomposition |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超高真空的環境下,探討含氫硫基(sulfhydryl group, -SH)化合物在銅及矽表面上的吸附及熱分解反應。以程溫脫附法(temperature programmed desorption, TPD)偵測脫附產物。輔以同步輻射光為光源的X-ray光電子能譜(X-ray photoelectron spectroscopy, XPS),鑑定表面上中間產物的化學組態變化。據此提出含-SH基化合物在矽及銅表面上的反應及分解的機制。
於低表面覆蓋率的條件下,部分化學吸附的烷硫醇分子,傾向分解形成吸附在表面的氫及烷基硫。升高溫度,脫附產物隨吸附分子的種類及量不同而有變化。銅表面的硫醇分子斷硫碳鍵,形成吸附於表面的硫原子及烷基。吸附在銅表面上的甲基與氫化合形成甲烷脫附,或偶合形成乙烷脫離表面。含b-H的乙烷基則傾向脫氫烯化成乙烯而脫附,少部分與氫結合形成乙烷。丁基主要經由b-H的脫離,以丁烯的形式離開銅表面。少量的烷基在表面上脫氫產生碳的沈積。烷硫醇於矽表面熱反應的途徑與銅表面大致相同,但甲基間的偶合反應極少發生。在矽表面上的甲基,不會偶合成乙烷脫附,但含b-H的乙基則完全分解脫附成乙烯。
升溫過程中銅表面的硫原子,除了以分子態烷硫醇脫附外,大部分殘留於表面上。然而,矽表面的硫原子則在約820 K,由表面帶走一個矽原子以SiS的形態脫附。
Adsorption and thermal reaction of alkanethiols (RSH; R = H, CH3, C2H5, and C4H9) on the Cu(110) and Si(100) surfaces were studied by means of temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Desorption profiles of evolved gases were detected by quadrupole mass. Intermediate species adsorbed on surface were characterized with XPS using synchrotron radiation.
Alkanethiols tended to dissociatively adsorb on Cu or Si surface to form surface hydrogen and alkanethiolate (RS) at 115 K. Upon raising the temperature, all of surface RS species further decomposed via the scission of the S-C bond, resulting in evolution of hydrocarbons and deposition of sulfur. The surface condition and the number of carbon atoms of alkyl groups of RSHs’ significantly affected their decomposition on the surfaces.
On the Cu surface, the evolved products from CH3SH adsorption varied with the initial coverage. At low coverages, CH3 decomposed from CH3S tended to combine with surface hydrogen to evolve CH4. At high coverages, the CH3 also recombined to form C2H6. The surface C2H5 decomposed from C2H5S produced C2H6 through hydrogenation and C2H4 through b-hydride elimination; the products ratio between C2H6 and C2H4 increased with the coverage of adsorbed C2H5SH. The surface C4H9 group decomposed from C4H9S underwent an exclusive elimination of b-hydride to form C4H8. The alkyl moiety on Cu surface also underwent extensive dehydrogenation become to surface carbons. The degree of carbon deposition decreases on increasing the number of carbon atoms in the alkyl group.
Silicon surface was less active than Cu toward R-S scission. Alkyl groups decomposed on the scission tend to dehydrogenate, instead of hydrogenation into alkane, into olefins and carbon deposit. Deposited sulfur further reacted with Si and desorbed in the form of SiS when the surface was heated above 820 K.
1. http://www.zurich.ibm.com/st/microcontact/sams/appl.html
2. Love, J. C.; Wolfe, D. B.; Chabinyc, M. L.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2002, 124, 1576.
3. Delamarche, E.; Geissler, M.; Wolf, H.; Michel, B. J. Am. Chem. Soc. 2002, 124, 3834.
4. Buriak, J. M. Chem. Rev. 2002, 102, 1272.
5. Dicke, C.; Morstein, M.; Hähner, G. Langmuir 2002, 18, 336.
6. Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4881.
7. Bell, C. M.; Yang, H. C.; Mallouk, T. M. Adv. Chem. Ser. 1995, 245, 221.
8. Ulman, A. Self-Assembled Monolayers of Thiol Thin Films; Academic Press: San Diego, 1998.
9. Bain, C. D.; Troughton, E. B.; Tao, Y.-T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G. J. Am. Chem. Soc. 1989, 111, 321.
10. Quake, S.R.; Scherer, A. Science 2000, 290, 1536.
11. Poirier, G. E. Chem. Rev. 1997, 97, 1117.
12. Hayashi, T.; Morikawa, Y.; Nozoye, H. J. Chem. Phys.2001, 114, 7615.
13. Gottschalck, J.; Hammer, B. J. Chem. Phys. 2002, 116, 784.
14. Gronbeck, H.; Curioni, A.; Andreoni, W. J. Am. Chem. Soc. 2000, 122, 3839.
15. Rodriguez, J. A.; Dvorak, J.; Jirsak, T.; Liu, G.; Hrbek, J.; Aray, Y.; González, C. J. Am. Chem. Soc. 2003, 125, 276.
16. Laibinis, P. E.; Whitesides, G. M.; Allara, D. L.; Tao, Y.-T.; Parikh, A. N.; Nuzzo, R. G. J. Am. Chem. Soc. 1991, 113, 7152.
17. Xia, Y.; Kim, E.; Mrksich, M.; Whitesides, G. M. Chem. Mater. 1996, 8, 601.
18. Jennings, G. K.; Munro, J. C.; Yong, T.-H.; Laibinis, P. E. Langmuir 1998, 14, 6130.
19. Bowker, M.; Madix, R. J. Surf. Sci. 1980, 95, 190.
20. Bowker, M.; Madix, R. J. Surf. Sci. 1982, 116, 549.
21. Sexton, B. A. Surf. Sci. 1979, 88, 299.
22. Ron, H.; Cohen, H.; Matlis, S.; Rappaport, M.; Rubinstein, I. J. Phys. Chem. B 1998, 102, 9861.
23. Sung, M. M.; Sung, K.; Kim, C. G.; Lee, S. S.; Kim, Y. J. Phys. Chem. B 2000, 104, 2273.
24. Parker, B.; Gellman, A. Surf. Sci. 1993, 292, 223.
25. Robert, J. T.; Friend, C. M. J. Am. Chem. Soc. 1987, 109, 4423.
26. Friend, C. M.; Roberts, J. T. Acc. Chem. Res. 1988, 21, 394.
27. Meagher, K. K.; Bocarsly, A. B.; Bernasek, S. L.; Ramanarayanan, T. A. J. Phys. Chem. B 2000, 104, 3320.
28. Landemark, E.; Karlsson, C. J.; Chao, Y.-C.; Uhrberg ,R. I. G. Phys. Rev. Lett. 1992, 69, 1588.
29. Yates, J. T., Jr. Science 1998, 279, 335.
30. Linford, M. R.; Chidsey, C. E. D. J. Am. Chem. Soc. 1993, 115, 12631-12632.
31. Linford, M. R.; Fenter, P.; Eisenberger, P. M.; Chidsey, C. E. D. J. Am. Chem. Soc. 1995, 117, 3145.
32. Sieval, A. B.; Demiral, A. L.; Nissink, J. W. M.; Linford, M. R.; van der Maas, J. H.; de Jeu, W. H.; Zuilhof, H.; Sudholter, E. J. Langmuir 1998, 14, 1759.
33. Schröder-Bergen, E.; Ranke, W. Surf. Sci. 1990, 236, 103
34. Bergerson, W.F.; Mulder, J. A.; Hsung, R. P.; Zhu, X. Y. J. Am. Soc. Chem. 1999, 121, 454.
35. Bansal, A.; Li, X.; Lauerman, I.; Lewis, N. S. J. Am. Soc. Chem. 1996, 118, 7225.
36. Sieval, A. B.; van den Hout, B.; Zuilhof, H.; Sudhölter, E. J. R. Langmuir 2001, 17, 2172.
37. Barone, V. Surf. Sci. 1987, 189/190, 106.
38. Rezaei, M. A.; Stipe, B. C.; Ho, W. J. Chem. Phys. 1999, 110, 3548.
39. Rezaei, M. A.; Stipe, B. C.; Ho, W. J. Phys. Chem. B 1998,102, 10941.
40. Han, M.; Luo, Y.; Camillone, N. , III; Osgood, R. M., Jr. J. Phys. Chem. B 2000, 104, 6576.
41. Luo, Y.; Slater, D.; Han, M.; Moryl, J.E.; Osgood, R. M., Jr. Appl. Phys. Lett. 1997, 71, 3799.
42. Roche, J.; Ryan, P.; Hughes, G. Surf. Sci. 2000, 465, 115.
43. Kaxiras, E. Phys. Rev. B 1991, 43, 6824.
44. Papageorgopoulos, A.; Kamaratos, M. Surf. Sci. 1996, 352-354, 364.
45. Koenders, L.; Moriarty, P.; Hughes, G.; Jusko, O. Surf. Sci. Lett. 1993, 297, L113.
46. Moriarty, P.; Koenders, L.; Hughes, G.; Phys. Rev. B 1993, 47, 15950.
47. Sampson, G. M.; White, J. M.; Ekerdt, J. G. Surf. Sci. 1998, 411, 163.
48. Woodruff, D. P.; Delchar, T. A. Modern Techniques of Surface Science, second ed.; Cambridge University Press, Cambridge, 1994.
49. Somorjai, G. A. Chemistry in Two Dimensions Surface, Cornell University Press, Ithaca, 1981.
50. Gates, B. C.; Knözinger, H. Impact of Surface Science on Catalysis, Academic Press: San Diego, 2000.
51. Tsai, W. L.; Hsu, P. C.; Hwu, Y.; Chen, C. H.; Chang, L. W.; Je, J. H.; Kin, H. M.; Groso, A.; Margaritondo, G. Nature 2002, 417, 139.
52. Campagna, M.; Rosei, R. Photoemission and Adsorption Spectroscopy of Solid and Interfaces with Synchrotron Radiation, North-Holland, 1990.
53. 陳建德, 真空科技, 1997, 9卷3/4期, 32.
54. Yeh, J. J. Atomic Calculation of Photoionzation Cross-Section and Asymmetry Parameters, Gordon and Breach Science, 1993.
55. Hahn, E. Adv. Electronic and Electron Physics, 1989, 75, 233.
56. Gasser, R. P. H. An Introduction to Chemisorption and Catalysis by Metal, Oxford University Press, 1985.
57. An Introduction to Surface Chemistry, http://www.chem.qmw.ac.uk/surfaces/scc/
58. Redhead, P. A. Vacuum 1962, 12, 203.
59. Ertl, G.; Kuppers, J. Low Energy Electrons and Surface Chemistry, VCH: Weinheim, 1985.
60. Somorjai, G. A. Introduction to Surface Chemistry and Catalysis, John Wily and Sons, New York, 1994.
61. Yates, J. T. Jr. Experimental Innovations in Surface Science: A Guide to Practical Laboratory Methods and Instruments, Springer-Verlag: New York, 1998.
62. Blyholder, G. W.; Cagle, G. W. Environ. Sci. Technol. 1971, 5, 158.
63. Anderson, S. E.; Nyberg, G. L. J. Electron Spectrosc. Relat. Phenom. 1990, 52, 735.
64. Baddorf A. P. Ph.D. Thesis, University of Pennsylvania, Department of Physics, 1987.
65. Chiang, C. M.; Wenzlaff, H.; Jenks, C. J.; Bent, B. E. J. Vac. Sci. Technol. A 1992, 10, 2185.
66. Bent, B. E. Chem. Rev. 1996, 96, 1361.
67. Lai, Y. H.; Yeh, C. T.; Lin, H. J.; Chen, C. T.; Hung, W. H. J. Phys. Chem. B 2002, 106, 1722.
68. Mullins, D. R.; Lyman, P. F. J. Phys. Chem. 1993, 97, 12008.
69. Vollmer, S.; Witte, G.; Woll, C. Langmuir 2001, 17, 7560.
70. Kiskinova, M. P. Surf. Sci. Rep. 1988, 8, 359.
71. Kiskinova, M.; Goodman, D. W. Surf. Sci. 1981, 108, 64.
72. Hardegree, E. L.; White, J. M. Surf. Sci. 1986, 175, 78.
73. Moon, D. W.; Bernasek, S. L.; Lu, J. P.; Gland, J. L.; Dwyer, D. Y. Surf. Sci. 1987, 184, 90.
74. Kariapper, M. S.; Grom, G. F.; Jackson, G. J.; McConville, C. F.; Woodruff, D. P. J. Phys. Condens. Matter 1998, 10, 8661.
75. Chiang, C. M.; Wentzlaff, T. H.; Bent, B. E. J. Phys. Chem. 1992, 96, 1836.
76. Jenks, C. J.; Bent, B. E.; Zaera, F. J. Phys. Chem B 2000, 104, 3017.
77. Uhrberg, R. I. G.; Landemark, E.; Chao, Y.-C. J. Electron Spectrosc. Relat. Phenom. 1995, 75, 197.
78. Waltenburg, H. N.; Yates, J. T., Jr. Chem. Rev. 1995, 95, 1589.
79. Anderson, L.; Köehler, U. Surf. Sci. 1993, 284, 77.
80. Dresser, M. J.; Tayor, P. A.; Wallace, R. M.; Choyke, W. J.; Yates, J. T., Jr. Surf. Sci. 1989, 218, 75.
81. Kruger, P.; Pollmann, J. Phys. Rev. B 1993, 47, 1898.
82. Xu, S. H.; Yang, Y.; Keeffe, M.; Lapeyre, G. J. Phys. Rev. B 1999, 60, 11586.
83. Casaletto, M. P.; Znoni, R.; Carbone, M.; Piancastelli, M. N.; Aballe, L.; Weiss, W.; Horn, K. Surf. Sci. 2002, 505, 251.
84. Lai, Y. H.; Yeh, C. T.; Cheng, S. H.; Liao, P.; Hung, W. H. J. Phys. Chem. B 2002, 106, 5438.
85. Bu, Y.; D. Shinn, W.; Lin, M. C. Surf. Sci. 1992, 276, 184.
86. Kong, M. J.; Lee, S. S.; Lyubovitsky, J.; Bent, S. F. Chem. Phys. Lett. 1996, 263, 1.
87. Colaianni, M. L.; Chen, P. J.; Gutleben, H.; Yates, J. T., Jr. Chem. Phys. Lett. 1992, 191, 561.
88. Rueter, M. A.; Vohs, J. M. J. Vac. Sci. Technol. A 1991, 9, 2916.
89. Brown, K. A.; Ho, W. Surf. Sci. 1995, 338, 111.
90. Rochet, F.; Jolly, F.; Bournel, F.; Dufour, G.; Sirotti, F.; Cantin, J. L. Phys. Rev. B 1998, 58, 11029.
91. Ikeda, M; Maruoka, T.; Nagashima, N. Surf. Sci. 1998, 416, 240.
92. Gutleben, H.; Lucs, S. R.; Cheng, C. C.; Choyke, W. J.; Yates, J. T., Jr. Surf. Sci. 1991, 257, 145.
93. Edamoto, K.; Kubota, Y.; Onchi, M.; Nishijima, M. Surf. Sci. 1984, 146, L533.
94. Zaera, F. Chem. Rev. 1995, 95, 2651.
95. Klug, D. A.; Greenlief, C. M. J. Vac. Sci. Technol. A 1996, 14, 1826.
96. Koleske, D. D.; Gates, S. M. J. Phys. Chem. 1993, 99, 5091.