簡易檢索 / 詳目顯示

研究生: 劉佩宜
Liu, Pei-Yi
論文名稱: 反應式沉積二矽化鈷磊晶
Reactive Deposition of Epitaxial Cobalt Disilicide
指導教授: 蔡哲正
Tsai, Cho-Jen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 50
中文關鍵詞: 反應式沉積二矽化鈷磊晶成長
外文關鍵詞: Reactive Deposition Epitaxy, CoSi2, Epitaxy Growth
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於CoSi2和Si之間的晶格差異(~ 1.2 %)很小,且擁有相似的晶體結構,所以CoSi2和矽基材之間能夠形成良好的磊晶結構,因此CoSi2後續的發展相當被看好。
    然而在矽基材上形成CoSi2磊晶結構的製程種類繁多,實驗的變因也很多,因此所成長出來的CoSi2結構也有所差異。為了要更進一步了解各種實驗變因對於鈷矽化物成長的影響,本實驗就三種不同的實驗變因來做探討,分別是鈷金屬的鍍覆厚度、鍍率及矽基材溫度。以下就這三個討論主題作一扼要的整理。
    我們利用反應式沉積磊晶法來研究鍍覆不同厚度的鈷金屬對CoSi2島狀物在矽基材上成長的影響。由實驗發現,隨著鍍覆的鈷金屬厚度越厚時,除了成核密度有緩慢增加的趨勢之外,已形成的CoSi2島狀物會持續成長,而且不論是寬或長的分佈範圍都有變大的趨勢。另外,含有A型界面和B型界面的CoSi2島狀物會同時存在且為獨立成核,其中以含B型界面的島狀物成長為主。
    我們利用反應式沉積磊晶法來研究不同的鍍覆速率對CoSi2島狀物在矽基材上成長的影響。由實驗中發現,隨著鍍膜速率越快,CoSi2島狀物的平均長度有變短的趨勢,但是它們的寬度卻落都在相同的範圍內,因此可以知道CoSi2島狀物的寬度分佈範圍和鍍膜速率無關。而成核密度則是隨著鍍膜速率越快而快速增加,直到成核密度接近飽和狀態後,成核的速率才逐漸趨緩。而B型界面所占的比例則會隨著鍍膜速率越快而增加。
    我們利用反應式沉積磊晶法來研究不同溫度的矽基材對CoSi2島狀物在矽基材上成長的影響。由實驗發現,隨著矽基材的溫度上升,CoSi2島狀物的尺寸和長寬比都會有變大的情形,而它們的成核密度則會下降,另外,島狀物尺寸變大的速度會隨著矽基材溫度上升而變快。


    The relatively small lattice mismatch (~ 1.2 %) between CoSi2 and Si and the similarity in crystal structure allow the possibility of growing epitaxial CoSi2 layer on Si. Therefore CoSi2 has a great advantage to be used in semiconductor technology.
    There are several reported methods in controlling the formation process of epitaxial CoSi2 on Si. And each method has various experimental factors to form different CoSi2 structures. In order to make a systematic understanding on the effect of each experimental factor on the growth of cobalt silicides, nominal thicknesses of cobalt, deposition rates and growth temperatures were changed separately in this thesis.
    The effect of nominal thickness of Co layers on the growth of the epitaxial CoSi2 islands using reactive deposition epitaxy was investigated. It was found that the nucleation density of CoSi2 and the average size of CoSi2 islands increase with increasing the nominal thickness of the Co layers from 0.3 nm to 0.5 nm. As the average size of CoSi2 islands increases, the distribution range of width and length of the CoSi2 islands become larger as well. In addition, CoSi2 islands containing both the A-type interfaces and the B-type interfaces coexisted and nucleated independently during growth. The number of B-type (twinned) interfaces is much greater than that of the A-type (untwinned) interfaces.
    It was found that, as the deposition rate increases (0.003 nm/sec – 0.005 nm/sec), the average length of CoSi2 islands is shorter but the distribution range of the width is the same. So the distribution range of width is independent on the deposition rate. Besides, the nucleation density of CoSi2 islands increases dramatically with increasing the deposition rate until it is close to the saturation. Moreover, the percentage of the B-type interfaces is higher with increasing deposition rate as well.
    It was found that, as the substrate temperature increased from 750 ℃ to 820 ℃, the average size and the aspect ratio of CoSi2 islands were larger and the nucleation density decreased.

    摘要 II Abstract III 總目錄 V 圖目錄 VII 表目錄 X 第一章 簡介 1 1.1 金屬矽化物的發展 1 1.2 金屬矽化物的性質 3 1.2.1 二矽化鈦 (TiSi2) 3 1.2.2 二矽化鈷 (CoSi2) 4 1.2.3 矽化鎳 (NiSi) 4 第二章 文獻回顧 5 2.1 鈷/矽系統 (Co/Si System) 5 2.1.1 鈷矽二元系統 5 2.1.2 二矽化鈷磊晶的初始成長 8 2.2 二矽化鈷島狀物在矽基材上的磊晶成長 8 2.2.1 二矽化鈷在矽基材上的磊晶結構 9 2.2.2 CoSi2/Si(111) 10 2.2.3 CoSi2/Si(110) 11 2.2.4 CoSi2/Si(100) 11 2.3 長型磊晶矽化物在矽基材上的成長機制 14 2.3.1 能量模型 (Energy Model) 14 2.3.2 動力學模型 (Kinetic Model) 15 2.4 二矽化鈷的磊晶製程 17 2.4.1 Solid Phase Epitaxy (SPE) 18 2.4.2 Ti-Interlayer Mediated Epitaxy (TIME) 18 2.4.3 Oxide-Mediated Epitaxy (OME) 20 2.4.4 Reactive Deposition Epitaxy (RDE) 20 2.4.5 Molecular Beam Epitaxy (MBE) 21 2.4.6 Ion Beam Synthesis (IBS) 21 2.5 研究動機 21 第三章 實驗流程 22 3.1 矽晶片清潔 22 3.2 熱處理 23 3.3 鍍膜 23 3.4 TEM試片製備 24 3.4.1 Plane View試片製備 24 3.5 材料特性分析 25 3.5.1 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 25 3.5.2 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 25 第四章 實驗結果與討論 27 4.1 鍍膜厚度對CoSi2島狀物成長的影響 27 4.2 鍍膜速度對CoSi2島狀物成長的影響 33 4.3 矽基板溫度對CoSi2島狀物成長的影響 37 4.4 矽基材表面生成蝕刻孔洞的成因 42 第五章 結論與未來展望 47 4.1 結論 47 4.2 未來展望 48 參考文獻 49

    K. Vanormelingen, Ph.D. thesis, KULeuven (2004).
    K. K. Ng, W. T. Lynch, IEEE Trams. Electron Devices 34 (1987), p. 503.
    S. P. Murarka, Intermetallics 3 (1995), p. 173.
    J. C. Barbour, A. E. M. J. Fischer, J. F. van der Veen, J. Appl. Phys. 62 (1987), p. 2582.
    Z. Ma, L. H. Alien, D. D. J. Allman, Thin Solid Films 253 (1994), p. 451.
    J. B. Lasky, J. S. Nakos, O. J. Cain, P. J. Geiss, IEDM Trans. Electron Devices 38
    (1991), p. 262.
    Y. Nara, M. Deura, K. Goto, T. Yamazaki, T. Fukano, T. Sugii, IEICE Trans.
    Electron.E78C (1995), p. 293.
    L. Zhang, Y. Du, H. Xu, Z. Pan, Calphad 30 (4) (2006), p 470.
    R. Pretorius, C. C. Theron, A. Vantomme, J. W. Mayer, Crit. Rev. solid state 24 (1) (1999), p. 1.
    G. V. Samsonov and I. M. Vinitokii, Handbook of Refractory Compounds (1960).
    G. J. van Gurp and C. Langereis, J. Appl. Phys. 46 (1975), p. 4301.
    G. Van Gurp, W. Van der Weg, and D. Sigurd, J. Appl. Phys. 49 (1978), p. 4011.
    K. Maex, M. Van Rossum, Properties of metal silicides, no. 14, INSPEC, 1995.
    D. Smeets, Ph.D. thesis, KULeuven (2007).
    D. Smeets, G. Vanhoyland, J. D’Haen, A. Vantomme, J. Phys. D: Appl. Phys. 42 (2009), p. 235402.
    L. Haderbache, P. Wetzel, C. Pirri, J. C. Peruchetti, D. Bolmont, G. Gewinner, Appl. Phys. Lett. 53 (1988), p. 1384.
    R. Stadler, D. Vogtenhuber, R. Podloucky, Phys. Rev. B 60 (1999), p. 17112.
    Z. He, D. J. Smith, P. A. Bennett, Phys. Rev. Lett. 93 (2004), p. 256102-1.
    P. A. Bennett, S. A. Parikh, D. G. Cahill, J. Vac. Sci. Technol. A 11(4) (1993), p. 1680.
    C. W. Lim, I. Petrov, J. E. Greene, Thin Solid Film 515 (2006), p. 1340.
    J. Tersoff, R. M. Tromp, Phys. Rev. Lett. 70 (1993), p. 2782.
    D. E. Jesson, G. Chen, K. M. Chen, S. J. Pennycook, Phys. Rev. Lett. 80 (1998), p. 5156.
    M. Kästner, B. Voigtländer, Phys. Rev. Lett. 82 (1999), p. 2745.
    Y. C. Chu, L. H. Wu, C. J. Tsai, Mater. Chem. Phys. 109 (2008), p271.
    L. J. Schowalter, J. R. Jimenez, L. M. Hsiung, K. Rajan, S.Hashimoto, R. D. Thompson, S. S. Iyer, J. Crystal Growth 111 (1991), p 948.
    R. Stalder, C. Schwarz, H. Sirringhaus, H. von Kanel, Surf. Sci. 271 (1992), p 355.
    S. L. Hsia, T. Y. Tan, P. L. Smith, G. E. McGuire, J. Appl. Phys. 70 (12) (1991), p. 7579.
    M. L. A. Dass, D. B. Fraser and C. S. Wei, Appl. Phys. Lett. 58 (1991), p. 1308.
    Y. Tsuji, M. Mizukami and S. Noda, Thin Solid Films 516 (2008), p. 3989.
    J. S. Byun, J. J. Kim,W. S. Kim, H. J. Kim, J. Electrochem. Soc. 142 (1995), p. 2805.
    B. Gebhardt, M. Falke, G. Beddies, H.-J. Hinneberg, Microelectronic Eng. 37/38 (1997), p. 483.
    R. T. Tung, Appl. Phys. Lett. 68 (1996), p. 3461.
    J. Baten, M. Offenberg, U. Emmerichs, P. Balk, Appl. Surf. Sci. 39 (1989), p. 266.
    A. Ishizaka, Y. Shiraki, J. Electrochem. Soc. 133 (1986), p. 666.
    R. T. Tung, J. Appl. Phys, Part 1 36 (1997), p. 1650.
    A. Vantomme, S. Degroote, J. Dekoster, G. Langouche, and R. Pretorius, Appl. Phys. Lett. 74 (1991), p. 3137.
    D. K. Sarkar, I. Rau, M. Falke, H. Giesler, S. Teichert, G. Beddies, and H. J. Hin-neberg, Appl. Phys. Lett.78 (2001), p. 3604.
    R. T. Tung, F. Schrey, S. M. Yalisove, Appl. Phys. Lett. 55 (1989), p. 2005.
    J. R. Jimenez, L. J. Schowalter, L. M. Hsiung, K. Rajan , S. Hashimoto, R. D. Thompson, S. S. Iyer, J. Vac. Sci. Technol. A 8 (1990), p. 3014.
    S. Mantl, J. Phys. D 31 (1998), p. 1.
    A. E. White, K. T. Short, R. C. Dynes, J. P. Garno, J. M. Gibson, Appl. Phys. Lett. 50 (1987), p. 95.
    L. H. Wu, C. J. Tsai, Electrochem. Solid St. 12 (2009), p. H72.
    Y. C. Chu, Ph.D. thesis, NTHU (2008).
    K. C. Kim, J. Vac. Sci. Technol. A 19(5) (2001), p. 2632.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE