研究生: |
張文奎 |
---|---|
論文名稱: |
散熱鰭片擴散熱阻之分析 |
指導教授: |
白寶實
簡國祥 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
中文關鍵詞: | 擴散熱阻 、散熱鰭片 |
外文關鍵詞: | spreading resistance, heat sink |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於散熱鰭片的構造簡單且製造容易,因此被大量使用於發熱裝置散熱之用,特別是在電子元件之冷卻方面。
當發熱元件與散熱鰭片的接觸面積不相同時,熱量由發熱元件產生透過散熱鰭片發散至外界時,因為熱流通過不同的截面積,此時散熱鰭片的熱阻除了其本身的熱阻之外,還會另外多增加一項熱阻值,我們稱它為擴散熱阻(spreading resistance)。由於多了這項熱阻,散熱鰭片的總熱阻會高於當初設計者所預估的熱阻值大小,因此影響了散熱鰭片的散熱效能。
在本研究中,改變發熱元件與散熱鰭片接觸面積的大小以及散熱鰭片底部基座的厚度,透過實驗藉由改變這些參數對於散熱鰭片的散熱效能是否有所影響。本研究發現在散熱鰭片的熱阻並非隨著厚度的增加而增加,而是有一個最佳厚度,能使散熱鰭片得到較好的散熱能力。因此在設計散熱鰭片時,除了要考慮鰭片的高度、長度以及密度等參數時,尚需注意到底部基座厚度也會影響散熱鰭片的散熱能力。
經由實驗比較之結果,在沒有擴散熱阻的影響下,散熱鰭片的熱阻值會比在有擴散熱阻影響下的熱阻值還要低。而不論是否有無擴散熱阻的影響下,底部基座厚度為4mm的散熱鰭片擁有較佳的散熱能力。
1. S. Lee,” Optimum Design and Selection of Heat Sinks”, Proceedings of 1 lth IEEE Semi-Therm Symposium, pp. 48-54, 1995.
2. S. Lee, S. Song, V. Au, and K.P. Moran, ”Constriction/Spreading Resistance Model for Electronic Packaging”, Proceedings of the 4th ASME/JSME thermal Engineering Joint Conference, Vol. 4, 1995, pp. 199-206.
3. S. Song, S. Lee, and V. Au, “Closed Form Equation for thermal Constriction/Spreading Resistance with Variable Resistance Boundary Condition”, Proceedings of the 1994 IEPS Conference, 1994, pp. 111-121.
4. D. P. Kennedy, “Spreading Resistance in Cylindrical Semiconductor Devices”, Journal of Applied Physics, Vol. 31, 1960, pp. 1490-1497.
5. Vedanth. Kadambi and Nesim Abuaf, “An Analysis of the Thermal Response of Power Chip Packages”, IEEE Transactions on Electron Devices, Vol. ED-32, NO.6,pp.1024-1033, June 1985.
6. K. J. Negus, M. M. Yovanovich and J. V. Beck, “On the Non dimensionalization of Constriction Resistance for Semi infinite Heat Flux Tubes”, Transactions of the ASME,Vol. 111, aug.1989, pp. 804-807.
7. D. J. Nelson, W.A. Sayers, “Acomparison of Two dimensional Planer, Ax symmetric and Three dimensional Spreading Resistance”, Proceedings SEMITHERM 1992, eighth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 1024-1033.
8. Baiwnat SinghLall, Alfonso Ortega, Humayun Kabir, “Theraml Design Rules for Electronic Components on Conducting Boards in Passively cooled enclosure”, Proceedings ITHERM ’94, Fourth Intersociety Conference on Thermal Phenomena in Electronic Systems, IEEE Cat. No. 94CH3241-7, pp. 403-410, IEEE, NY.
9. M. Michael Yovanovich, J. Richard Culham, and Pete Teertstra, “Analytical Modeling of Spreading Resistance in Flux Tubes, Half Spaces, and Compound Disks”, IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A, Vol. 21, No. 1, pp. 168-176, march, 1998.
10. T. M. Ying and K. C. Toh, “A Heat Spreading Resistance Model for Anisotropic Thermal Conductivity Materials in Electronic Packaging”, Proceedings ITHERM ’00, Intersociety Conference on Thermal Phenomena in Electronic Systems, pp. 314-321.
11. P. Hui and H. S. Tan, “Temperature distribution in a heat dissipation system using a cylindrical diamond heat spreader on a copper heat sink”, J. Appl. Phys. Pp. 748-757, January 1994.
12. Richard F. David, “Computerized Thermal Analysis of Hybrid Circuits”, IEEE Transactions on Parts, Hybrid and Packaging, Vol. PHP-13. No. 3, pp. 283-290, Sep. 1997.
13. T. F. Smith, C. Beckermann, S. W. Weber, “combined Conduction, Natural Convection, and Radiation Heat Transfer in an Electronic Chassis”, Transactions of the ASME, Vol. 113, pp. 382-391, Dec. 1991.
14. J. V. Beck, A. M. Osman, G. Lu, “Maximum Temperatures in Diamond Heat Spreaders Using the Surface Element Method”, Journal of Heat Transfer, Feb. 1993, Vol. 115, pp. 51-57.
15. T. A. Myrum, “Natural Convection From a Heat Source in a Top Venetd Enclosure”, Transactions of the ASME, Vol. 112, pp. 632-639, Aug. 1990.