研究生: |
何昆霖 Ho, Kun-Lin |
---|---|
論文名稱: |
心臟毒素進入心肌細胞內的機制探討 Multiple Mechanisms of Cobra Cardiotoxin Internalization into Cardiomyocytes |
指導教授: |
吳文桂
Wu, Wen-Guey |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 55 |
中文關鍵詞: | 心臟毒素 、胞吞 、心肌細胞 |
外文關鍵詞: | Cardiotoxin, cell internalization, Cardiomyocytes |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鹼性多肽鏈如何進入細胞一直是個具有爭議性且複雜的議題,但具有重要生物意義。台灣眼鏡蛇毒蛋白裡一個主要的成分為心臟毒素,各心臟毒蛋白(cardiotoxin)之間為一個結構相似的β-板狀(β-sheet polypeptides)且帶有正電荷的蛋白,使被咬傷者的心肌收縮而停止跳動,但是對於其進入細胞的詳細機制並不是很了解。(一)在過去研究中,心臟毒素中A2、A4會在進入細胞後並進一步的產生毒性,而在心臟毒素A2、A4的胺基酸的序列中之間有一個胺基酸的差異且心臟毒素A2、A4之間對於硫化乙醯肝素蛋白多醣 (HSPG)識別具有差異性,因此在本研究想要去探討心臟毒素A2,A4進入細胞的機制。結果顯示,A2、A4兩者具有相同程度的巨胞飲作用(Macropinocytosis)以及胞膜窖引導之內吞作用(Caveolae-mediated endpcytosis),但卻有不同程度由包涵素引導的內吞作用(Clathrin-mediated endocytosis),因此一個胺基酸在蛋白上的差異所能引起細胞胞吞反應的差異性。(二)心臟毒素A3在過去研究中,由於發現具有形成孔洞的能力,會造成孔洞的蛋白進入細胞的機制與細胞膜修復有關聯,我們發現心臟毒素A3會在細胞表面上造成不具選擇性的孔洞,在外部有鈣的環境下,隨著鈣離子經由心臟毒素A3產生的孔洞流入而引導細胞膜修復,然而在細胞外部沒有鈣離子的情況下,心臟毒素A3更容易進入細胞且聚集在粒線體。因此,除了鈣離子之外,膽固醇亦會調控心臟毒素的A3進入細胞,影響心臟毒素A3進入細胞的量和進入細胞的位置。上述的結果顯示鹼性多肽鏈對於硫化乙醯肝素蛋白多醣和膽固醇可能有不同的敏感性,造成對於細胞反應有所不同,這顯示蛋白質進入細胞的機制有多重的調控,而且對細胞膜的醣胺素及脂質有高靈敏度。
How basic polypeptide endocytosis got into living cells was a controversial and complex issue but with significant biological function. Cardiotoxins (CTXs), a major component of snake venom from Taiwan cobra Naja atra, are structurally homologues beta-sheet basic polypeptides that cause systolic cardiac arrest of the bitten victim with unknown internalization mechanism. (1) Previous study showed that CTX A2, A3 and A4 would get into cell and further exhibited toxicities; moreover, comparing amino acid between CTX A2 and A4, there are one amino acid difference. CTX A2 and A4 were specific to low or high sulfate heparan sulfate proteoglycans (HSPG), respectively. It is important to know what the endocytosis route of CTX A2, A3 and A4 is. According to these results, CTX A2 and A4 internalized via macropinocytosis and caveolae-mediated endocytosis at the same level but not for clathrin-mediated endocytosis. Therefore, one amino acid difference on protein caused different cell internalization responses in cells. (2) In the previous study, CTX A3 will cause pore-formation. Several researches show the correlation between membrane repair and internalization. We found that CTX A3 formed none-specific pore on cell membrane based on the result. In the presence of calcium, calcium influx from CTX A3-inducing pore triggered membrane repair process. However, in the absence of calcium, CTX A3 got into cell and targeted to mitochondria more obvious compared with in the presence of calcium environment. Besides calcium effect, cholesterol could also regulate CTX A3 internalization and localization. According to these data, basic polypeptide probably with different sensitive to HSPG and cholesterol caused different cell response. This indicated that protein internalization was regulated by multiple mechanisms and with high sensitive to HSPG and cholesterol of cell membrane.
Amyere, M., B. Payrastre, U. Krause, P. Van Der Smissen, A. Veithen, and P.J. Courtoy. 2000. Constitutive macropinocytosis in oncogene-transformed fibroblasts depends on sequential permanent activation of phosphoinositide 3-kinase and phospholipase C. Mol Biol Cell. 11:3453-67.
Austrian, R. 1981. Pneumococcus: the first one hundred years. Rev Infect Dis. 3:183-9.
Baba, H., I. Kawamura, C. Kohda, T. Nomura, Y. Ito, T. Kimoto, I. Watanabe, S. Ichiyama, and M. Mitsuyama. 2001. Essential role of domain 4 of pneumolysin from Streptococcus pneumoniae in cytolytic activity as determined by truncated proteins. Biochem Biophys Res Commun. 281:37-44.
Billington, S.J., B.H. Jost, and J.G. Songer. 2000. Thiol-activated cytolysins: structure, function and role in pathogenesis. FEMS Microbiol Lett. 182:197-205.
Bonev, B.B., R.J. Gilbert, P.W. Andrew, O. Byron, and A. Watts. 2001. Structural analysis of the protein/lipid complexes associated with pore formation by the bacterial toxin pneumolysin. J Biol Chem. 276:5714-9.
Boya, P., B. Roques, and G. Kroemer. 2001. New EMBO members' review: viral and bacterial proteins regulating apoptosis at the mitochondrial level. Embo J. 20:4325-31.
Brown, D.A., and E. London. 1997. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun. 240:1-7.
Chien, K.Y., C.M. Chiang, Y.C. Hseu, A.A. Vyas, G.S. Rule, and W. Wu. 1994. Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. J Biol Chem. 269:14473-83.
Chien, K.Y., W.N. Huang, J.H. Jean, and W.G. Wu. 1991. Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra (Naja naja atra) venom. Interactions of zwitterionic phospholipids with cardiotoxin analogues. J Biol Chem. 266:3252-9.
Christian, A.E., M.P. Haynes, M.C. Phillips, and G.H. Rothblat. 1997. Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res. 38:2264-72.
Conner, S.D., and S.L. Schmid. 2003. Regulated portals of entry into the cell. Nature. 422:37-44.
Doerner, K.C., E.C. Gurley, Z.R. Vlahcevic, and P.B. Hylemon. 1995. Regulation of cholesterol 7 alpha-hydroxylase expression by sterols in primary rat hepatocyte cultures. J Lipid Res. 36:1168-77.
Doherty, G.J., and H.T. McMahon. 2009. Mechanisms of Endocytosis. Annu Rev Biochem.
Forouhar, F., W.N. Huang, J.H. Liu, K.Y. Chien, W.G. Wu, and C.D. Hsiao. 2003. Structural basis of membrane-induced cardiotoxin A3 oligomerization. J Biol Chem. 278:21980-8.
Frick, M., N.A. Bright, K. Riento, A. Bray, C. Merrified, and B.J. Nichols. 2007. Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol. 17:1151-6.
Gilbert, R.J., R.K. Heenan, P.A. Timmins, N.A. Gingles, T.J. Mitchell, A.J. Rowe, J. Rossjohn, M.W. Parker, P.W. Andrew, and O. Byron. 1999. Studies on the structure and mechanism of a bacterial protein toxin by analytical ultracentrifugation and small-angle neutron scattering. J Mol Biol. 293:1145-60.
Harder, T., P. Scheiffele, P. Verkade, and K. Simons. 1998. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol. 141:929-42.
Hinman, C.L., E. Lepisto, R. Stevens, I.N. Montgomery, H.C. Rauch, and R.A. Hudson. 1987. Effects of cardiotoxin D from Naja naja siamensis snake venom upon murine splenic lymphocytes. Toxicon. 25:1011-4.
Ho, C.L., C.Y. Lee, and H.H. Lu. 1975. Electrophysiological effects of cobra cardiotoxin on rabbit heart cells. Toxicon. 13:437-46.
Huang, W.N., S.C. Sue, D.S. Wang, P.L. Wu, and W.G. Wu. 2003. Peripheral binding mode and penetration depth of cobra cardiotoxin on phospholipid membranes as studied by a combined FTIR and computer simulation approach. Biochemistry. 42:7457-66.
Idone, V., C. Tam, and N.W. Andrews. 2008a. Two-way traffic on the road to plasma membrane repair. Trends Cell Biol. 18:552-9.
Idone, V., C. Tam, J.W. Goss, D. Toomre, M. Pypaert, and N.W. Andrews. 2008b. Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J Cell Biol. 180:905-14.
Iliev, A.I., J.R. Djannatian, R. Nau, T.J. Mitchell, and F.S. Wouters. 2007. Cholesterol-dependent actin remodeling via RhoA and Rac1 activation by the Streptococcus pneumoniae toxin pneumolysin. Proc Natl Acad Sci U S A. 104:2897-902.
Ipsen, J.H., G. Karlstrom, O.G. Mouritsen, H. Wennerstrom, and M.J. Zuckermann. 1987. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta. 905:162-72.
Kirkpatrick, C.A., and S.B. Selleck. 2007. Heparan sulfate proteoglycans at a glance. J Cell Sci. 120:1829-32.
Krueger, E.W., J.D. Orth, H. Cao, and M.A. McNiven. 2003. A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol Biol Cell. 14:1085-96.
Lee, S.C., H.H. Guan, C.H. Wang, W.N. Huang, S.C. Tjong, C.J. Chen, and W.G. Wu. 2005. Structural basis of citrate-dependent and heparan sulfate-mediated cell surface retention of cobra cardiotoxin A3. J Biol Chem. 280:9567-77.
London, E. 2002. Insights into lipid raft structure and formation from experiments in model membranes. Curr Opin Struct Biol. 12:480-6.
Mahley, R.W., and Z.S. Ji. 1999. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res. 40:1-16.
Mayor, S., and R.E. Pagano. 2007. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol. 8:603-12.
McNeil, P.L. 2002. Repairing a torn cell surface: make way, lysosomes to the rescue. J Cell Sci. 115:873-9.
McNeil, P.L., K. Miyake, and S.S. Vogel. 2003. The endomembrane requirement for cell surface repair. Proc Natl Acad Sci U S A. 100:4592-7.
McNeil, P.L., and R.A. Steinhardt. 1997. Loss, restoration, and maintenance of plasma membrane integrity. J Cell Biol. 137:1-4.
Nabi, I.R., and P.U. Le. 2003. Caveolae/raft-dependent endocytosis. J Cell Biol. 161:673-7.
Nichols, B. 2003. Caveosomes and endocytosis of lipid rafts. J Cell Sci. 116:4707-14.
Ohkubo, S., and N. Nakahata. 2007. [Role of lipid rafts in trimeric G protein-mediated signal transduction]. Yakugaku Zasshi. 127:27-40.
Orlandi, P.A., and P.H. Fishman. 1998. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol. 141:905-15.
Orth, J.D., and M.A. McNiven. 2006. Get off my back! Rapid receptor internalization through circular dorsal ruffles. Cancer Res. 66:11094-6.
Overholtzer, M., A.A. Mailleux, G. Mouneimne, G. Normand, S.J. Schnitt, R.W. King, E.S. Cibas, and J.S. Brugge. 2007. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell. 131:966-79.
Palm-Apergi, C., A. Lorents, K. Padari, M. Pooga, and M. Hallbrink. 2009. The membrane repair response masks membrane disturbances caused by cell-penetrating peptide uptake. Faseb J. 23:214-23.
Parton, R.G., and K. Simons. 2007. The multiple faces of caveolae. Nat Rev Mol Cell Biol. 8:185-94.
Patel, H.V., A.A. Vyas, K.A. Vyas, Y.S. Liu, C.M. Chiang, L.M. Chi, and W. Wu. 1997. Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action. J Biol Chem. 272:1484-92.
Payne, C.K., S.A. Jones, C. Chen, and X. Zhuang. 2007. Internalization and trafficking of cell surface proteoglycans and proteoglycan-binding ligands. Traffic. 8:389-401.
Pitha, J., T. Irie, P.B. Sklar, and J.S. Nye. 1988. Drug solubilizers to aid pharmacologists: amorphous cyclodextrin derivatives. Life Sci. 43:493-502.
Poon, G.M., and J. Gariepy. 2007. Cell-surface proteoglycans as molecular portals for cationic peptide and polymer entry into cells. Biochem Soc Trans. 35:788-93.
Reddy, A., E.V. Caler, and N.W. Andrews. 2001. Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell. 106:157-69.
Rosado, C.J., A.M. Buckle, R.H. Law, R.E. Butcher, W.T. Kan, C.H. Bird, K. Ung, K.A. Browne, K. Baran, T.A. Bashtannyk-Puhalovich, N.G. Faux, W. Wong, C.J. Porter, R.N. Pike, A.M. Ellisdon, M.C. Pearce, S.P. Bottomley, J. Emsley, A.I. Smith, J. Rossjohn, E.L. Hartland, I. Voskoboinik, J.A. Trapani, P.I. Bird, M.A. Dunstone, and J.C. Whisstock. 2007. A common fold mediates vertebrate defense and bacterial attack. Science. 317:1548-51.
Rossjohn, J., S.C. Feil, W.J. McKinstry, R.K. Tweten, and M.W. Parker. 1997. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell. 89:685-92.
Rossjohn, J., R.J. Gilbert, D. Crane, P.J. Morgan, T.J. Mitchell, A.J. Rowe, P.W. Andrew, J.C. Paton, R.K. Tweten, and M.W. Parker. 1998. The molecular mechanism of pneumolysin, a virulence factor from Streptococcus pneumoniae. J Mol Biol. 284:449-61.
Roth, T.F., and K.R. Porter. 1964. Yolk Protein Uptake in the Oocyte of the Mosquito Aedes Aegypti. L. J Cell Biol. 20:313-32.
Rothberg, K.G., J.E. Heuser, W.C. Donzell, Y.S. Ying, J.R. Glenney, and R.G. Anderson. 1992. Caveolin, a protein component of caveolae membrane coats. Cell. 68:673-82.
Shao, Y., W. Akmentin, J.J. Toledo-Aral, J. Rosenbaum, G. Valdez, J.B. Cabot, B.S. Hilbush, and S. Halegoua. 2002. Pincher, a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes. J Cell Biol. 157:679-91.
Sharma, D.K., J.C. Brown, A. Choudhury, T.E. Peterson, E. Holicky, D.L. Marks, R. Simari, R.G. Parton, and R.E. Pagano. 2004. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol Biol Cell. 15:3114-22.
Soltani, C.E., E.M. Hotze, A.E. Johnson, and R.K. Tweten. 2007. Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc Natl Acad Sci U S A. 104:20226-31.
Sonnen, A.F., A.J. Rowe, P.W. Andrew, and R.J. Gilbert. 2008. Oligomerisation of pneumolysin on cholesterol crystals: similarities to the behaviour of polyene antibiotics. Toxicon. 51:1554-9.
Steinhardt, R.A., G. Bi, and J.M. Alderton. 1994. Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science. 263:390-3.
Stringaris, A.K., J. Geisenhainer, F. Bergmann, C. Balshusemann, U. Lee, G. Zysk, T.J. Mitchell, B.U. Keller, U. Kuhnt, J. Gerber, A. Spreer, M. Bahr, U. Michel, and R. Nau. 2002. Neurotoxicity of pneumolysin, a major pneumococcal virulence factor, involves calcium influx and depends on activation of p38 mitogen-activated protein kinase. Neurobiol Dis. 11:355-68.
Subtil, A., I. Gaidarov, K. Kobylarz, M.A. Lampson, J.H. Keen, and T.E. McGraw. 1999. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci U S A. 96:6775-80.
Sue, S.C., J.R. Brisson, S.C. Chang, W.N. Huang, S.C. Lee, H.C. Jarrell, and W. Wu. 2001. Structures of heparin-derived disaccharide bound to cobra cardiotoxins: context-dependent conformational change of heparin upon binding to the rigid core of the three-fingered toxin. Biochemistry. 40:10436-46.
Sun, J.J., and M.J. Walker. 1986. Actions of cardiotoxins from the southern Chinese cobra (Naja naja atra) on rat cardiac tissue. Toxicon. 24:233-45.
Teng, C.M., W. Jy, and C. Ouyang. 1984. Cardiotoxin from Naja naja atra snake venom: a potentiator of platelet aggregation. Toxicon. 22:463-70.
Tilley, S.J., E.V. Orlova, R.J. Gilbert, P.W. Andrew, and H.R. Saibil. 2005. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell. 121:247-56.
Tzeng, W.F., and Y.H. Chen. 1988. Suppression of snake-venom cardiotoxin-induced cardiomyocyte degeneration by blockage of Ca2+ influx or inhibition of non-lysosomal proteinases. Biochem J. 256:89-95.
Ungewickell, E.J., and L. Hinrichsen. 2007. Endocytosis: clathrin-mediated membrane budding. Curr Opin Cell Biol. 19:417-25.
Veithen, A., P. Cupers, P. Baudhuin, and P.J. Courtoy. 1996. v-Src induces constitutive macropinocytosis in rat fibroblasts. J Cell Sci. 109 ( Pt 8):2005-12.
Vincent, J.P., H. Schweitz, R. Chicheportiche, M. Fosset, M. Balerna, M.C. Lenoir, and M. Lazdunski. 1976. Molecular mechanism of cardiotoxin action on axonal membranes. Biochemistry. 15:3171-5.
Vyas, K.A., H.V. Patel, A.A. Vyas, and W. Wu. 1998. Glycosaminoglycans bind to homologous cardiotoxins with different specificity. Biochemistry. 37:4527-34.
Walker, J.A., R.L. Allen, P. Falmagne, M.K. Johnson, and G.J. Boulnois. 1987. Molecular cloning, characterization, and complete nucleotide sequence of the gene for pneumolysin, the sulfhydryl-activated toxin of Streptococcus pneumoniae. Infect Immun. 55:1184-9.
Wang, C.H., J.H. Liu, S.C. Lee, C.D. Hsiao, and W.G. Wu. 2006. Glycosphingolipid-facilitated membrane insertion and internalization of cobra cardiotoxin. The sulfatide.cardiotoxin complex structure in a membrane-like environment suggests a lipid-dependent cell-penetrating mechanism for membrane binding polypeptides. J Biol Chem. 281:656-67.
Wang, C.H., and W.G. Wu. 2005. Amphiphilic beta-sheet cobra cardiotoxin targets mitochondria and disrupts its network. FEBS Lett. 579:3169-74.
Wu, P.L., S.C. Lee, C.C. Chuang, S. Mori, N. Akakura, W.G. Wu, and Y. Takada. 2006. Non-cytotoxic cobra cardiotoxin A5 binds to alpha(v)beta3 integrin and inhibits bone resorption. Identification of cardiotoxins as non-RGD integrin-binding proteins of the Ly-6 family. J Biol Chem. 281:7937-45.
Yancey, P.G., W.V. Rodrigueza, E.P. Kilsdonk, G.W. Stoudt, W.J. Johnson, M.C. Phillips, and G.H. Rothblat. 1996. Cellular cholesterol efflux mediated by cyclodextrins. Demonstration Of kinetic pools and mechanism of efflux. J Biol Chem. 271:16026-34.