研究生: |
吳承祐 Wu, Cheng Yu |
---|---|
論文名稱: |
新穎白芷素衍生物藉由重置癌細胞代謝有效抑制人類鱗狀癌細胞之研究 A Novel Angelicin Derivative Inhibits Proliferation of Human Squamous Cell Carcinoma Cells by Reprogramming Cancer Metabolism |
指導教授: |
郭靜娟
Kuo, Ching Chuan 莊永仁 Chuang, Yung Jen |
口試委員: |
林常申
Lin, Chang Shen 洪良宜 Hung, Liang Yi |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 白芷素 、抗癌藥物 、癌症治療 、鱗狀細胞癌 、細胞停滯 、DNA損傷 、S期停滯 、癌症代謝 、瓦氏效應 |
外文關鍵詞: | angelicin, anti-cancer drug, cancer therapy, squamous cell carcinoma, cytostasis, DNA damage, S-phase arrest, cancer metabolism, Warburg effect |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
白芷素為一種具有多種生物活性的中草藥,不僅可以抗癲癇痙攣或是做鎮靜劑,並且在近期研究中發現具有抗癌的效果,我們團隊2012年合成一系列白芷素的衍生物,在初步的研究當中,化合物 8苯甲酰基-4-甲基-9-苯基-2H-呋喃並[2,3-H]色烯-2-酮 (BPR2P0001S0),對於許多不同癌症類型有顯著的抑制效果,但是目前抗癌的機制仍然還沒有完全釐清。因此,在本研究中,我們首先探討該化合物對於不同癌症類型的治療效果,結果發現,該化合物在人類鱗狀細胞癌 KB 及 Ca-922-der1有非常顯著的生長抑制效果,IC50可以達到奈米數量級,但對於AsPC1與 MDA-MB-231等腺癌細胞相對來說較不敏感,此外,對正常的人臍靜脈內皮細胞以及纖維母細胞並沒有明顯的細胞生長抑制現象。進一步以KB細胞為研究模型,在細胞群落形成的實驗中,我們發現在BPR2P0001S0治療後,將顯著的減少腫瘤細胞的增殖能力,但沒有造成細胞的死亡。進一步的研究顯示,BPR2P0001S0 會誘導細胞DNA損傷、細胞老化以及細胞週期停滯於S期。除此之外,此化合物還會造成細胞醣類代謝的途徑改變;致癌基因c-Myc以及醣解作用的酵素,六碳糖激酶2和乳酸脫氫酶A,皆受到藥物的作用而使得RNA與蛋白質的表現量皆下降。不僅如此,我們發現外加丙酮酸或乳酸,可以回復BPR2P0001S0誘發的細胞生長抑制作用。臨床前動物實驗的分析結果顯示,以靜脈注射的方式,將BPR2P0001S0投予有人類KB異種移植腫瘤的NOD/SCID小鼠,具有腫瘤抑制的效果。根據以上研究,我們發現BPR2P0001S0對鱗狀細胞癌具有細胞生長抑制、可誘發DNA 損傷與促使細胞週期停滯在S期、並具有重置癌症代謝的能力。接下來,我們將進一步證明BPR2P0001S0的治療,在上述各個現象間,彼此的調控網絡與關係。總而言之,我們認為BPR2P0001S0對人體鱗狀細胞癌具有治療潛力。
Angelicin, which is categorized into the class of angular furanocoumarin, has been indicated as a potential compound that has multiple activities in various pharmacological substances, including anticonvulsants, intercalating agents, and tranquilizing agents. Recently, a series of novel angelicin derivatives have been synthesized by our drug discovery team. Preliminary screens indicated that many of them have potent anti-tumor proliferative effect. Among them, 8-Benzoyl-4-methyl-9-phenyl- 2H-furo[2,3-h]chromen-2-one (BPR2P0001S0) is the most potent anti-cancer agent against various human cancer cells growth. However, the mechanism of action underlying this anti-cancer effect is not fully understood. In the present study, we demonstrated that BPR2P0001S0 exerted potent anti-proliferation activity against several squamous cell carcinoma cell lines, such as KB and Ca-9-22, with IC50 values in the nanomolar range. Nevertheless, this compound was less potent on the inhibition of adenocarcinoma cell lines. No growth inhibitory effect was observed in normal cells, such as human umbilical vein endothelial cells (HUVEC) and fibroblast Detroit551. In the present study, we chose KB cell as the experimental model for further research. Clonogenic assay supported that BPR2P0001S0 treatment significantly reduce the proliferative capacity of KB cells, but did not cause cell death. Further studies showed that BPR2P0001S0 was able to induce DNA damage, senescence and cell cycle arrest in S phase. In addition, this compound could also cause changes in glucose metabolism by down-regulation of the expression level of c-Myc, hexokinase II and lactate dehydrogenase A mRNA and protein in KB cells. Moreover, cell growth inhibition induced by BPR2P0001S0 could be rescued by addition of lactate and methyl pyruvate in KB cells. Preclinical animal study demonstrated that BPR2P0001S0 exhibited anti-tumor activity against the growth of KB xenograft tumor in NOD/SCID mice. Overall, based on our results, we concluded that BPR2P0001S0 causes cancer growth inhibition, DNA damage, S phase arrest, cell senescence and cancer metabolism alteration. Although network that connects with each effect is under investigation, we can deduce that BPR2P0001S0 has potential to be a new therapeutic agent toward human squamous cell carcinoma growth.
1 Berman, J. J. Tumor taxonomy for the developmental lineage classification of neoplasms. Bmc Cancer 4, doi:Artn 88
Doi 10.1186/1471-2407-4-88 (2004).
2 Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664-1672 (1996).
3 Hartwell, L. H. & Weinert, T. A. Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629-634 (1989).
4 Kohn, K. W., Jackman, J. & Oconnor, P. M. Cell-Cycle Control and Cancer-Chemotherapy. Journal of cellular biochemistry 54, 440-452, doi:DOI 10.1002/jcb.240540411 (1994).
5 Hartwell, L. H. & Kastan, M. B. Cell-Cycle Control and Cancer. Science 266, 1821-1828, doi:DOI 10.1126/science.7997877 (1994).
6 Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9, 153-166, doi:Doi 10.1038/Nrc2602 (2009).
7 Schwartz, G. K. & Shah, M. A. Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 23, 9408-9421, doi:10.1200/JCO.2005.01.5594 (2005).
8 Bonner, W. M. et al. OPINION gamma H2AX and cancer. Nat Rev Cancer 8, 957-967, doi:Doi 10.1038/Nrc2523 (2008).
9 Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature 432, 316-323, doi:Doi 10.1038/Nature03097 (2004).
10 Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Current opinion in cell biology 19, 238-245, doi:DOI 10.1016/j.ceb.2007.02.009 (2007).
11 Smith, J., Tho, L. M., Xu, N. H. & Gillespie, D. A. The ATM-Chk2 and ATR-Chk1 Pathways in DNA Damage Signaling and Cancer. Adv Cancer Res 108, 73-112, doi:Doi 10.1016/S0065.230x(10)08002.4 (2010).
12 Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071-1078, doi:Doi 10.1038/Nature08467 (2009).
13 Ou, Y. H., Chung, P. H., Sun, T. P. & Shieh, S. Y. p53 C-terminal phosphorylation by CHK1 and CHK2 participates in the regulation of DNA-damage-induced C-terminal acetylation. Molecular biology of the cell 16, 1684-1695, doi:10.1091/mbc.E04-08-0689 (2005).
14 Basu, A. & Krishnamurthy, S. Cellular responses to Cisplatin-induced DNA damage. Journal of nucleic acids 2010, doi:10.4061/2010/201367 (2010).
15 Hartmann, A., Herkommer, K., Gluck, M. & Speit, G. DNA-damaging effect of cyclophosphamide on human blood cells in vivo and in vitro studied with the single-cell gel test (comet assay). Environmental and molecular mutagenesis 25, 180-187 (1995).
16 Momparler, R. L., Karon, M., Siegel, S. E. & Avila, F. Effect of Adriamycin on DNA, Rna, and Protein-Synthesis in Cell-Free Systems and Intact-Cells. Cancer research 36, 2891-2895 (1976).
17 Tewey, K. M., Rowe, T. C., Yang, L., Halligan, B. D. & Liu, L. F. Adriamycin-Induced DNA Damage Mediated by Mammalian DNA Topoisomerase-Ii. Science 226, 466-468, doi:DOI 10.1126/science.6093249 (1984).
18 Yadav, V., Sultana, S., Yadav, J. & Saini, N. Gatifloxacin induces S and G2-phase cell cycle arrest in pancreatic cancer cells via p21/p27/p53. PloS one 7, e47796, doi:10.1371/journal.pone.0047796 (2012).
19 Iguchi, T. et al. Zoledronate-induced S phase arrest and apoptosis accompanied by DNA damage and activation of the ATM/Chkl/cdc25 pathway in human osteosarcoma cells. Int J Oncol 31, 285-291 (2007).
20 Joe, A. K. et al. Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clinical Cancer Research 8, 893-903 (2002).
21 DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell metabolism 7, 11-20, doi:10.1016/j.cmet.2007.10.002 (2008).
22 Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11, 325-337, doi:10.1038/nrc3038 (2011).
23 Ben-Haim, S. & Ell, P. 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med 50, 88-99, doi:10.2967/jnumed.108.054205 (2009).
24 Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033, doi:10.1126/science.1160809 (2009).
25 Galluzzi, L., Kepp, O., Vander Heiden, M. G. & Kroemer, G. Metabolic targets for cancer therapy. Nature reviews. Drug discovery 12, 829-846, doi:10.1038/nrd4145 (2013).
26 Schulze, A. & Harris, A. L. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491, 364-373, doi:Doi 10.1038/Nature11706 (2012).
27 Zhao, Y., Butler, E. B. & Tan, M. Targeting cellular metabolism to improve cancer therapeutics. Cell death & disease 4, e532, doi:10.1038/cddis.2013.60 (2013).
28 Pelicano, H., Martin, D. S., Xu, R. H. & Huang, P. Glycolysis inhibition for anticancer treatment. Oncogene 25, 4633-4646, doi:10.1038/sj.onc.1209597 (2006).
29 Liu, Y. et al. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Molecular cancer therapeutics 11, 1672-1682, doi:10.1158/1535-7163.MCT-12-0131 (2012).
30 Cao, X. et al. Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer chemotherapy and pharmacology 59, 495-505, doi:10.1007/s00280-006-0291-9 (2007).
31 Zhou, M. et al. Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Molecular cancer 9, 33, doi:10.1186/1476-4598-9-33 (2010).
32 Yamaguchi, R. et al. Efficient elimination of cancer cells by deoxyglucose-ABT-263/737 combination therapy. PloS one 6, e24102, doi:10.1371/journal.pone.0024102 (2011).
33 Michelakis, E. D., Webster, L. & Mackey, J. R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. British journal of cancer 99, 989-994, doi:10.1038/sj.bjc.6604554 (2008).
34 Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Experimental cell research 25, 585-621 (1961).
35 Braig, M. & Schmitt, C. A. Oncogene-induced senescence: putting the brakes on tumor development. Cancer research 66, 2881-2884, doi:10.1158/0008-5472.CAN-05-4006 (2006).
36 Ewald, J. A., Desotelle, J. A., Wilding, G. & Jarrard, D. F. Therapy-Induced Senescence in Cancer. J Natl Cancer I 102, 1536-1546, doi:Doi 10.1093/Jnci/Djq364 (2010).
37 Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences of the United States of America 92, 9363-9367 (1995).
38 Yang, D. et al. Induction of autophagy and senescence by knockdown of ROC1 E3 ubiquitin ligase to suppress the growth of liver cancer cells. Cell death and differentiation 20, 235-247, doi:10.1038/cdd.2012.113 (2013).
39 Hampel, B., Malisan, F., Niederegger, H., Testi, R. & Jansen-Durr, P. Differential regulation of apoptotic cell death in senescent human cells. Experimental gerontology 39, 1713-1721, doi:10.1016/j.exger.2004.05.010 (2004).
40 Chang, B. D. et al. Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. Proceedings of the National Academy of Sciences of the United States of America 99, 389-394, doi:10.1073/pnas.012602599 (2002).
41 Dorr, J. R. et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501, 421-425, doi:10.1038/nature12437 (2013).
42 Munoz-Espin, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nature reviews. Molecular cell biology 15, 482-496, doi:10.1038/nrm3823 (2014).
43 Lacy, A. & O'Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Current pharmaceutical design 10, 3797-3811 (2004).
44 Mester, I., Szendrei, K. & Reisch, J. [Constituents of Clausena anisata (Willd.) Oliv. (Rutaceae). I. Coumarins from the root bark (author's transl)]. Planta medica 32, 81-85, doi:10.1055/s-0028-1097563 (1977).
45 Hata, K., Kozawa, M. & Ikeshiro, Y. [New coumarins isolated from the roots of Angelica anomala Lall. and Angelica cartilaginomarginata (Makino) Nakai (Umbelliferae)]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan 87, 1118-1124 (1967).
46 Senol, F. S. et al. An in vitro and in silico approach to cholinesterase inhibitory and antioxidant effects of the methanol extract, furanocoumarin fraction, and major coumarins of Angelica officinalis L. fruits. Phytochem Lett 4, 462-467, doi:DOI 10.1016/j.phytol.2011.08.016 (2011).
47 Kelly, V. P. et al. Chemoprevention of aflatoxin B1 hepatocarcinogenesis by coumarin, a natural benzopyrone that is a potent inducer of aflatoxin B1-aldehyde reductase, the glutathione S-transferase A5 and P1 subunits, and NAD(P)H:quinone oxidoreductase in rat liver. Cancer research 60, 957-969 (2000).
48 Egan, D. et al. The Pharmacology, Metabolism, Analysis, and Applications of Coumarin and Coumarin-Related Compounds. Drug Metab Rev 22, 503-529, doi:Doi 10.3109/03602539008991449 (1990).
49 Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr Med Chem 12, 887-916, doi:Doi 10.2174/0929867053507315 (2005).
50 Musa, M. A., Cooperwood, J. S. & Khan, M. O. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr Med Chem 15, 2664-2679 (2008).
51 Viola, G. et al. Differentiation and apoptosis in UVA-irradiated cells treated with furocoumarin derivatives. Annals of the New York Academy of Sciences 1171, 334-344, doi:10.1111/j.1749-6632.2009.04894.x (2009).
52 Averbeck, D. Recent Advances in Psoralen Phototoxicity Mechanism. Photochem Photobiol 50, 859-882, doi:DOI 10.1111/j.1751-1097.1989.tb02917.x (1989).
53 Dubakiene, R. & Kupriene, M. Scientific problems of photosensitivity. Medicina 42, 619-624 (2006).
54 Raquet, N. & Schrenk, D. Relative photomutagenicity of furocoumarins and limettin in the hypoxanthine phosphoribosyl transferase assay in V79 cells. Chemical research in toxicology 22, 1639-1647, doi:10.1021/tx9002287 (2009).
55 Kavli, G., Midelfart, K., Raa, J. & Volden, G. Phototoxicity from furocoumarins (psoralens) of Heracleum laciniatum in a patient with vitiligo. Action spectrum studies on bergapten, pimpinellin, angelicin and sphondin. Contact dermatitis 9, 364-366 (1983).
56 Liu, F. et al. Angelicin regulates LPS-induced inflammation via inhibiting MAPK/NF-kappa B pathways. J Surg Res 185, 300-309, doi:DOI 10.1016/j.jss.2013.05.083 (2013).
57 Yeh, J. Y. et al. Anti-Influenza Drug Discovery: Structure-Activity Relationship and Mechanistic Insight into Novel Angelicin Derivatives. J Med Chem 53, 1519-1533, doi:Doi 10.1021/Jm901570x (2010).
58 Barthomeuf, C. et al. Inhibition of P-glycoprotein transport function and reversion of MDR1 multidrug resistance by cnidiadin. Cancer chemotherapy and pharmacology 56, 173-181, doi:10.1007/s00280-004-0914-y (2005).
59 Wang, E. J., Casciano, C. N., Clement, R. P. & Johnson, W. W. Inhibition of P-glycoprotein transport function by grapefruit juice psoralen. Pharmaceutical research 18, 432-438 (2001).
60 Ullrich, S. E. Systemic immunosuppression of cell-mediated immune reactions by a monofunctional psoralen plus ultraviolet A radiation. Photodermatology, photoimmunology & photomedicine 8, 116-122 (1991).
61 Rahman, M. A., Kim, N. H., Yang, H. & Huh, S. O. Angelicin induces apoptosis through intrinsic caspase-dependent pathway in human SH-SY5Y neuroblastoma cells. Molecular and cellular biochemistry 369, 95-104, doi:10.1007/s11010-012-1372-1 (2012).
62 Moon, L. et al. Isoimperatorin, cimiside E and 23-O-acetylshengmanol-3-xyloside from Cimicifugae rhizome inhibit TNF-alpha-induced VCAM-1 expression in human endothelial cells: involvement of PPAR-gamma upregulation and PI3K, ERK1/2, and PKC signal pathways. Journal of ethnopharmacology 133, 336-344, doi:10.1016/j.jep.2010.10.004 (2011).
63 Shiao, H. Y. et al. An Efficient, Mild and Scalable Synthesis of Bioactive Compounds Containing the Angelicin Scaffold. J Chin Chem Soc-Taip 59, 1548-1554, doi:DOI 10.1002/jccs.201200233 (2012).
64 Schmitt, C. A. et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335-346 (2002).
65 Clement, M. V., Hirpara, J. L., Chawdhury, S. H. & Pervaiz, S. Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood 92, 996-1002 (1998).
66 Ciardiello, F. et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clinical cancer research : an official journal of the American Association for Cancer Research 6, 2053-2063 (2000).
67 Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Molecular and cellular biology 19, 1-11 (1999).
68 Wang, Y., Hong, C., Zhou, C., Xu, D. & Qu, H. B. Screening Antitumor Compounds Psoralen and Isopsoralen from Psoralea corylifolia L. Seeds. Evidence-based complementary and alternative medicine : eCAM 2011, 363052, doi:10.1093/ecam/nen087 (2011).
69 Lee, S. et al. Combined Treatment of Herbal Mixture Extract H9 with Trastuzumab Enhances Anti-tumor Growth Effect. Journal of microbiology and biotechnology (2015).
70 Wolf, A. et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. The Journal of experimental medicine 208, 313-326, doi:10.1084/jem.20101470 (2011).
71 Mathupala, S. P., Rempel, A. & Pedersen, P. L. Glucose catabolism in cancer cells. Isolation, sequence, and activity of the promoter for type II hexokinase. The Journal of biological chemistry 270, 16918-16925 (1995).
72 Shen, D. W., Pouliot, L. M., Hall, M. D. & Gottesman, M. M. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacological reviews 64, 706-721, doi:10.1124/pr.111.005637 (2012).
73 Liu, P., Cheng, H., Roberts, T. M. & Zhao, J. J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nature reviews. Drug discovery 8, 627-644, doi:10.1038/nrd2926 (2009).
74 Miller, S. C. et al. Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. Biochem Pharmacol 79, 1272-1280, doi:10.1016/j.bcp.2009.12.021 (2010).
75 Gratacap, M. P. et al. The new tyrosine-kinase inhibitor and anticancer drug dasatinib reversibly affects platelet activation in vitro and in vivo. Blood 114, 1884-1892, doi:10.1182/blood-2009-02-205328 (2009).
76 Wiesenauer, C. A., Yip-Schneider, M. T., Wang, Y. & Schmidt, C. M. Multiple anticancer effects of blocking MEK-ERK signaling in hepatocellular carcinoma. Journal of the American College of Surgeons 198, 410-421, doi:10.1016/j.jamcollsurg.2003.10.004 (2004).
77 Xiong, G., Deng, L., Zhu, J., Rychahou, P. G. & Xu, R. Prolyl-4-hydroxylase alpha subunit 2 promotes breast cancer progression and metastasis by regulating collagen deposition. BMC cancer 14, 1, doi:10.1186/1471-2407-14-1 (2014).
78 Huang, O. et al. A771726, an anti-inflammatory drug, exerts an anticancer effect and reverses tamoxifen resistance in endocrine-resistant breast cancer cells. Oncology reports 32, 627-634, doi:10.3892/or.2014.3249 (2014).
79 Larue, L. & Bellacosa, A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene 24, 7443-7454, doi:10.1038/sj.onc.1209091 (2005).
80 Yawata, T. et al. Identification of a </= 600-kb region on human chromosome 1q42.3 inducing cellular senescence. Oncogene 22, 281-290, doi:10.1038/sj.onc.1206143 (2003).
81 van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439-446, doi:10.1038/nature13193 (2014).
82 Li, W. et al. Cisplatin-induced senescence in ovarian cancer cells is mediated by GRP78. Oncology reports 31, 2525-2534, doi:Doi 10.3892/Or.2014.3147 (2014).
83 di Fagagna, F. D. Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8, 512-522, doi:Doi 10.1038/Nrc2440 (2008).
84 Campisi, J. & di Fagagna, F. D. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Bio 8, 729-740, doi:Doi 10.1038/Nrm2233 (2007).
85 Chang, B. D. et al. Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. P Natl Acad Sci USA 99, 389-394, doi:DOI 10.1073/pnas.012602599 (2002).