簡易檢索 / 詳目顯示

研究生: 游宜靜
You, Yi-Jing
論文名稱: 利用摻鐿光纖雷射產生似噪音脈衝及其應用在超連續光譜產生和光學同調斷層掃描之研究
Fiber-laser-generated noise-like pulses and their applications to supercontinuum generation and optical coherence tomography
指導教授: 潘犀靈
Pan, Ci-Ling
口試委員: 賴暎杰
Lai, Yin-Chieh
施宙聰
Shy, Jow-Tsong
黃升龍
Huang, Sheng-Lung
黃衍介
Huang, Yen-Chieh
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 157
中文關鍵詞: 光纖雷射超快光學似噪音脈衝超連續光譜光學同調斷層掃描
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 似噪音脈衝於摻鉺光纖雷射第一次被發現至今,這種特殊之脈衝已吸引眾多研究者的興趣。在本篇論文中,我們報導由摻鐿光纖雷射產生中、高能量似噪音脈衝的研究成果。似噪音脈衝之物理機制及其與一般鎖模脈衝之區別也將予以討論。利用似噪音脈衝雷射作為激發光源可產生超連續光譜。同時,我們利用似噪音脈衝產生之超連續光譜被實際應用於架設一光學同調斷層掃描系統(optical coherence tomography, 簡稱 OCT)。
    論文第一部分將從光纖雷射架構本身開始介紹。似噪音脈衝光纖雷射是由非線性極化演化(nonlinear polarization evolution)之環形共振腔產生,本論文將展示並分析兩種雷射之架構:映射色散光纖雷射(dispersion-mapped fiber laser)以及全正色散光纖雷射(all-normal dispersion fiber laser),兩套雷射系統皆能產生似噪音脈衝(noise-like pulse)及鎖模脈衝(mode-locked pulse)。我們對似噪音脈衝之特性作全面性的探討。理論分析主要是藉由非線性薛丁格方程式模擬光脈衝在光纖內之傳播,結果與實驗量測相當吻合。
    在論文的第二部分中,我們探討如何利用似噪音脈衝產生超連續光譜。實驗結果顯示,似噪音脈衝之獨特脈衝性質使其使用一般的單模光纖即可有效地激發產生超連續光譜。我們顯示雷射光源波長(~1 μm)位於正色散區(光纖零色散值為 ~ 1.3 μm)仍能有效地產生超連續光譜。我們同時展示了用多種不同的單模光纖產生超連續光譜與光纖特性之關聯。特殊光纖如光子晶體光纖產生之超連續光譜也將於文中闡述。
    最後,我們將光源實際應用於光學同調斷層掃描,其為現今生物學以及醫學上一種非常重要的研究工具。似噪音脈衝之光纖雷射由於其優越的低同調特性,應用於OCT極具潛力。我們之光源成功地被應用於自由空間的時域OCT中,縱向解析度高達2.3 μm。高解析度之光纖式頻域OCT生物影像的初步結果也呈現在此論文中。實驗結果顯示由似噪脈衝在單模光纖中產生的超連續光做為光學斷層掃描的光源極具優勢。


    Since the first demonstration of noise-like-pulse (NLP) operation in the ring cavity of an Er: doped fiber oscillator, there has been tremendous interests in this special regime of pulsed lasers. In this dissertation, we describe our work on generation and amplification of medium- and high-energy noise-like pulses with Yb-doped fibers. We also demonstrate supercontinuum (SC) generation techniques where NLPs serve as the pump. Theoretical aspects as well as discussions about physical mechanisms which make NLPs distinguishable from regular mode-locked pulses are also discussed. SC pumped by NLPs has been employed successfully in optical coherence tomography (OCT) systems. The advantages of such approach as well as the promising features of NLPs for such applications are presented.
    Beginning with a brief description of the cavity configurations that are typically used in fiber laser oscillators, we then focus our attention on ring-type cavities where nonlinear polarization evolution (NPE) is involved in pulsed operation. We show that both regular Gaussian pulses and noise-like pulses can be achieved in the same cavity by choosing proper cavity components and adjustment. We analyze and compare two popular cavity configurations: dispersion mapped cavity and all-normal-dispersion (ANDi) one. Simulation results based on coupled nonlinear Schrodinger equations are supported by experimental measurements.
    Second part of the dissertation is about supercontinuum (SC) generation. Here we analyze the possibilities of efficient SC generation by using standard silica fibers. It is shown that unique features of NLPs make them very useful for such purpose. That is, the central wavelength of the pump and zero-dispersion wavelength (ZDW) of SC generation media is not critical. We show that even if the pump wavelength is deep in the normal dispersion regime (for example, ~1 μm where ZDW=1.33 μm), SC can be efficiently generated. Simulations and experimental results of SC generation by NLPs using different single-mode fibers are presented. We discuss the optimal selection of fiber types and other characteristics to generate flat SC in spectral region above 1 μm. The pros and cons of using specialty fibers such as photonic crystal fibers pumped by NLPs will also be elaborated.
    In the third part of the dissertation we consider the application of noise-like pulses for selected applications. The SC spectrum scheme is flat with a bandwidth of 365 nm centered at 1320 nm. The light source is successfully employed in a time-domain OCT, achieving an axial resolution of 2.3 μm. High resolution fiber-based spectral-domain OCT imaging of bio-tissue (onion skin), comparable to that obtained using a commercial swept source, is also demonstrated.

    Table of Contents 摘要 I Abstract II Table of Contents IV Lists of Tables VIII Lists of Figures IX Chapter 1 Introduction 1 1.1 Organization of the dissertation 2 Chapter 2 Background 4 2.1 Ytterbium-doped fiber laser and amplifier 4 2.1.1. Ytterbium (Yb) doped fiber 4 2.1.2. Pumping wavelength of laser diode 6 2.1.3. Doped fiber amplifier 6 2.1.4. Operation of cladding pumping 6 2.1.5. Amplified Spontaneous Emission (ASE) 7 2.2 Mode-locking techniques 8 2.2.1. Mode-locking theory 8 2.2.2. Active mode-locking 10 2.2.3. Passive mode-locking 11 2.2.4. Passive Mode-locking with a Saturable absorber 11 2.2.5. Passive Mode-locking by Nonlinear polarization evolution 13 2.3 Nonlinearities in optical fibers 14 2.3.1. Self-Phase modulation (SPM) 14 2.3.2. Stimulated Raman Scattering (SRS) 15 2.3.3. Stimulated Brillouin Scattering (SBS) 17 2.3.4. Four-wave mixing (FWM) 17 2.4 Pulse propagation in optical fiber 18 2.4.1. Basic concept 19 2.4.2. Nonlinear Schrödinger coupled-mode equation 21 Chapter 3 Noise-like pulses (NLP) 23 3.1 Overview 23 3.2 Characteristics 23 3.2.1. Simulation results of pulse propagation through optical fibers 25 3.3 Physical mechanisms for generating NLP 28 3.4 Technique for generating time-stretched noise-like pulses 29 Chapter 4 Generation of mode-locked and noise-like pulses from Yb-doped fiber lasers and amplifiers 33 4.1 Dispersion-mapped fiber lasers 33 4.1.1. System setup 33 4.1.2. Net normal dispersion of dispersion-mapped fiber laser 35 4.1.3. Near zero dispersion of dispersion-mapped fiber laser 38 4.1.4. Net negative dispersion of dispersion-mapped fiber laser 40 4.1.5. High energy fiber oscillator 42 4.2 All normal dispersion (ANDi) fiber lasers 44 4.2.1. System setup 45 4.2.2. Behavior of ANDi fiber laser with filter in intra-cavity 46 4.2.3. Behavior of ANDi fiber laser without intra-cavity filter 49 4.3 All-fiber-based Yb-doped fiber laser 51 4.4 Power scaling of fiber lasers 53 4.5 Yb-doped fiber amplifiers 55 4.5.1. Theoretical analysis and system design 55 4.5.2. System setup 58 4.5.3. Amplification of mode-locked and noise-like pulses 58 4.5.4. Simulation results of amplified pulses 62 4.6 Summary 64 Chapter 5 Supercontinuum generation in optical fibers 65 5.1 Introduction 65 5.1.1. Physical mechanisms 66 5.2 Supercontinuum generated by noise-like pulses 67 5.2.1. Experimental setup 68 5.2.2. Results 69 5.2.3. Results from ANDi fiber laser 71 5.3 Nonlinear Schrödinger equation in the frequency-domain 72 5.3.1. Simulation results 72 5.3.2. Comparison of supercontinuum generation by typical single-mode fibers 76 5.4 Supercontinuum in photonics crystal fiber 79 5.5 Summary 82 Chapter 6 Applications to Optical coherence tomography (OCT) 84 6.1 Introduction 84 6.2 Principles of OCT 86 6.2.1. Axial resolution 87 6.2.2. Lateral resolution 88 6.2.3. Signal-to-noise ratio 89 6.3 Signal acquisition and processing 91 6.3.1. Subtraction of background signal 96 6.3.2. Linearity in wavenumber 97 6.3.3. Dispersion mismatch 98 6.4 Noise-like pulse for OCT applications 100 6.4.1. Time-domain OCT 101 6.4.2. Spectral-domain OCT 102 6.4.3. Fiber-based SD-OCT 103 6.4.4. Example of OCT images 106 6.4.5. Design of noise-like SC swept source 109 6.4.6. Swept source OCT (SS-OCT) 110 6.5 Speckle reduction in OCT using noise-like pulses 113 6.5.1. Speckles in OCT 113 6.5.2. Speckle analysis for OCT with NLP-based SC sources 116 6.6 Summary 121 Chapter 7 Conclusions 122 7.1 Future prospects 123 References 125 VITA 134 Publication List 134

    [1] C. J. Koester and E. Snitzer, "Amplification in a Fiber Laser," Appl. Opt., vol. 3, pp. 1182-1186, 1964.
    [2] J. Stone and C. A. Burrus, "Neodymium-Doped Fiber Lasers: Room Temperature cw Operation with an Injection Laser Pump," Appl Opt, vol. 13, pp. 1256-8, 1974.
    [3] W. L. Barnes, S. B. Poole, J. E. Townsend, L. Reekie, D. J. Taylor, and D. N. Payne, "Er3+Yb3+and Er3+doped fiber lasers," Journal of Lightwave Technology, vol. 7, pp. 1461-1465, 1989.
    [4] J. Limpert, T. Clausnitzer, A. Liem, T. Schreiber, H. J. Fuchs, H. Zellmer, et al., "High-average-power femtosecond fiber chirped-pulse amplification system," Opt. Lett., vol. 28, pp. 1984-1986, 2003.
    [5] E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, "Double clad, offset core Nd fiber laser," in Optical Fiber Sensors, New Orleans, Louisiana, 1988, p. PD5.
    [6] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE Journal of Quantum Electronics, vol. 33, pp. 1049-1056, 1997.
    [7] O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernández-García, "Adjustable noiselike pulses from a figure-eight fiber laser," Applied Optics, vol. 50, pp. E24-E31, 2011.
    [8] S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, "Generation of double-scale femto/pico-secondoptical lumps in mode-locked fiber lasers," Opt. Express, vol. 17, pp. 20707-20713, 2009.
    [9] Y. An, D. Shen, W. Zhao, and J. Long, "Characteristics of pulse evolution in mode-locked thulium-doped fiber laser," Optics Communications, vol. 285, pp. 1949-1953, 2012.
    [10] S. M. Kobtsev and S. V. Smirnov, "Fiber lasers mode-locked due to nonlinear polarization evolution: Golden mean of cavity length," Laser Physics, vol. 21, pp. 272-276, 2011.
    [11] L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, "Noise-like pulse in a gain-guided soliton fiber laser," Optics Express, vol. 15, pp. 2145-2150, 2007.
    [12] M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser," Opt Lett, vol. 22, pp. 799-801, 1997.
    [13] A. Govind P, Application of Nonlinear Fiber Opitcs, 2nd ed.: Academic Press, 2008.
    [14] K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," Journal of Applied Physics, vol. 91, p. 576, 2002.
    [15] H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, et al., "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region," IEEE Journal of Selected Topics in Quantum Electronics, vol. 1, pp. 2-13, 1995.
    [16] N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission-application to Nd:YAG lasers," Quantum Electronics, IEEE Journal of, vol. 35, pp. 101-109, 1999.
    [17] W. E. Lamb, Jr., "Theory of an Optical Maser," Physical Review, vol. 134, pp. A1429-A1450, 1964.
    [18] H. A. Haus, "Mode-locking of lasers," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 6, pp. 1173-1185, 2000.
    [19] L. E. Hargrove, R. L. Fork, and M. A. Pollack, "Locking of He-Ne laser modes induced by synchronous intracavity modulation," Applied Physics Letters, vol. 5, p. 4, 1964.
    [20] C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B, vol. 16, pp. 46-56, 1999.
    [21] A. K. Zaytsev, C. L. Wang, C. H. Lin, and C. L. Pan, "Robust diode-end-pumped Nd:GdVO4 laser passively mode-locked with saturable output coupler," Laser Physics, vol. 21, pp. 2029-2035, 2011.
    [22] V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation," Electronics Letters, vol. 28, pp. 1391-1393, 1992.
    [23] F. Shimizu, "Frequency Broadening in Liquids by a Short Light Pulse," Physical Review Letters, vol. 19, pp. 1097-1100, 1967.
    [24] S. A. Planas, N. L. Mansur, C. H. Cruz, and H. L. Fragnito, "Spectral narrowing in the propagation of chirped pulses in single-mode fibers," Opt Lett, vol. 18, pp. 699-701, 1993.
    [25] C. V. Raman and K. S. Krishnan, "A new type of secondary radiation," Nature, vol. 121, pp. 501-502, 1928.
    [26] R. H. Stolen, A. R. Tynes, and E. P. Ippen, "Raman Oscillation in Glass Optical Waveguide," Applied Physics Letters, vol. 20, pp. 62-64, 1972.
    [27] E. P. Ippen and R. H. Stolen, "Stimulated Brillouin-Scattering in Optical Fibers," Applied Physics Letters, vol. 21, pp. 539-&, 1972.
    [28] G. P. Agrawal, Nonlinear fiber optics, 4 ed.: Academic Press, 2007.
    [29] F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Physical Review Letters, vol. 92, p. 213902, 2004.
    [30] R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, "High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier," Optics Letters, vol. 37, pp. 1529-1531, 2012.
    [31] S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, "Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation," Optics Express, vol. 20, pp. 27447-27453, 2012.
    [32] D. Tang, L. Zhao, and B. Zhao, "Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser," Opt. Express, vol. 13, pp. 2289-2294, 2005.
    [33] L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, "Noise-like pulse in a gain-guided soliton fiber laser," Opt. Express, vol. 15, pp. 2145-2150, 2007.
    [34] C. Aguergaray, A. Runge, M. Erkintalo, and N. G. R. Broderick, "Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability," Optics Letters, vol. 38, pp. 2644-2646, 2013.
    [35] A. K. Zaytsev, C. H. Lin, Y. J. You, F. H. Tsai, C. L. Wang, and C. L. Pan, "A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser," Laser Physics Letters, vol. 10, p. 045104, 2013.
    [36] H. Lim, F. Ö. Ilday, and F. W. Wise, "Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser," Optics Letters, vol. 28, pp. 660-662, 2003.
    [37] O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernández-García, "Adjustable noiselike pulses from a figure-eight fiber laser," Appl. Opt., vol. 50, pp. E24-E31, 2011.
    [38] A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Optics Express, vol. 14, pp. 10095-10100, 2006.
    [39] D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, "Pulse Repetition Rates in Passive, Selfstarting, Femtosecond Soliton Fiber Laser," Electronics Letters, vol. 27, pp. 1451-1453, 1991.
    [40] A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Energy quantisation in figure eight fibre laser," Electronics Letters, vol. 28, pp. 67-68, 1992.
    [41] O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, "Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control," Optics Communications, vol. 269, pp. 156-165, 2007.
    [42] M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, "Environmentally stable picosecond Yb fiber laser with low repetition rate," Applied Physics B, vol. 111, pp. 39-43, 2013.
    [43] B. Orta, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, "Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers," Optics Express, vol. 15, pp. 15595-15602, 2007.
    [44] A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Passive harmonic modelocking of a fibre soliton ring laser," Electronics Letters, vol. 29, pp. 1860-1861, 1993.
    [45] A. A. M. Saleh, R. M. Jopson, J. D. Evankow, and J. Aspell, "Modeling of Gain in Erbium-Doped Fiber Amplifiers," Ieee Photonics Technology Letters, vol. 2, pp. 714-717, 1990.
    [46] C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, "Analytical Model for Rare-Earth-Doped Fiber Amplifiers and Lasers," IEEE Journal of Quantum Electronics, vol. 30, pp. 1817-1830, 1994.
    [47] T. Pfeiffer and H. Bulow, "Analytical Gain Equation for Erbium-Doped Fiber Amplifiers Including Mode Field Profiles and Dopant Distribution," IEEE Photonics Technology Letters, vol. 4, pp. 449-451, 1992.
    [48] S.-S. Lin, S.-K. Hwang, and J.-M. Liu, "Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses," Optics Express, vol. 22, pp. 4152-4160, 2014.
    [49] S. H. Saeid, "Computer simulation and performance evaluation of single mode fiber optics," in Proceedings of the World Congress on Engineering, 2012.
    [50] J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of Modern Physics, vol. 78, pp. 1135-1184, 2006.
    [51] K. Bizheva, B. Pova?ay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, et al., "Compact, broad-bandwidth fiber laser for sub-2-?m axial resolution optical coherence tomography in the 1300-nm wavelength region," Optics Letters, vol. 28, pp. 707-709, 2003.
    [52] S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, et al., "Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb," Physical Review Letters, vol. 84, pp. 5102-5105, 2000.
    [53] L. Boivin and B. C. Collings, "Spectrum Slicing of Coherent Sources in Optical Communications," Optical Fiber Technology, vol. 7, pp. 1-20, 2001.
    [54] R. R. Alfano and S. L. Shapiro, "Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses," Physical Review Letters, vol. 24, pp. 592-594, 1970.
    [55] W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, "An anomalous frequency broadening in water," Optics Communications, vol. 4, pp. 413-415, 1972.
    [56] P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, "Generation of infrared supercontinuum covering 3–14 μm in dielectrics and semiconductors," Optics Letters, vol. 10, pp. 624-626, 1985.
    [57] P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, "Supercontinuum Generation in Gases," Physical Review Letters, vol. 57, pp. 2268-2271, 1986.
    [58] C. Lin and R. H. Stolen, "New nanosecond continuum for excited‐state spectroscopy," Applied Physics Letters, vol. 28, pp. 216-218, 1976.
    [59] S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, "Supercontinuum self-Q-switched ytterbium fiber laser," Opt Lett, vol. 22, pp. 298-300, 1997.
    [60] J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Optics Letters, vol. 25, pp. 25-27, 2000.
    [61] X. Limin, M. S. Demokan, J. Wei, W. Yiping, and Z. Chun-liu, "Fusion Splicing Photonic Crystal Fibers and Conventional Single-Mode Fibers: Microhole Collapse Effect," Lightwave Technology, Journal of, vol. 25, pp. 3563-3574, 2007.
    [62] R. S. Watt, C. F. Kaminski, and J. Hult, "Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy," Applied Physics B, vol. 90, pp. 47-53, 2008.
    [63] H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, "Experimentally investigate the nonlinear amplifying process of high power picoseconds fiber amplifier," Optics and Laser Technology, vol. 47, pp. 278-282, 2013.
    [64] P. H. Pioger, V. Couderc, P. Leproux, and P. A. Champert, "High spectral power density supercontinuum generation in a nonlinear fiber amplifier," Optics Express, vol. 15, pp. 11358-11363, 2007.
    [65] H. Pourbeyram, G. P. Agrawal, and A. Mafi, "Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber," Applied Physics Letters, vol. 102, p. 201107, 2013.
    [66] K. Yin, B. Zhang, W. Yang, H. Chen, and J. Hou, "Over an octave cascaded Raman scattering in short highly germanium-doped silica fiber," Optics Express, vol. 21, pp. 15987-15997, 2013.
    [67] H. Sayinc, K. Hausmann, U. Morgner, J. Neumann, and D. Kracht, "Picosecond all-fiber cascaded Raman shifter pumped by an amplified gain switched laser diode," Optics Express, vol. 19, pp. 25918-25924, 2011.
    [68] J. C. Hernandez-Garcia, O. Pottiez, and J. M. Estudillo-Ayala, "Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-eight fiber laser," Laser Physics, vol. 22, pp. 221-226, 2012.
    [69] A. Zaytsev, C.-H. Lin, Y.-J. You, C.-C. Chung, C.-L. Wang, and C.-L. Pan, "Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers," Optics Express, vol. 21, pp. 16056-16062, 2013.
    [70] J. M. D. a. J. R. Taylor, Supercontinuum generation in optical fibers: Cambridge University Press, 2010.
    [71] J. Santhanam and G. P. Agrawal, "Raman-induced spectral shifts in optical fibers: general theory based on the moment method," Optics Communications, vol. 222, pp. 413-420, 2003.
    [72] I. Ilev, H. Kumagai, K. Toyoda, and I. Koprinkov, "Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping," Appl Opt, vol. 35, pp. 2548-53, 1996.
    [73] T. Kato, Y. Suetsugu, and M. Nishimura, "Estimation of nonlinear refractive index in various silica-based glasses for optical fibers," Optics Letters, vol. 20, pp. 2279-2281, 1995.
    [74] K. J. Blow and D. Wood, "Theoretical Description of Transient Stimulated Raman-Scattering in Optical Fibers," IEEE Journal of Quantum Electronics, vol. 25, pp. 2665-2673, 1989.
    [75] K. Rottwitt and J. H. Povlsen, "Analyzing the fundamental properties of Raman amplification in optical fibers," Lightwave Technology, Journal of, vol. 23, pp. 3597-3605, 2005.
    [76] V. Brückner, "Basics and practice of optical data communication," in Elements of Optical Networking, ed: Vieweg+Teubner Verlag, Springer, 2011.
    [77] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, et al., "Optical coherence tomography," Science, vol. 254, pp. 1178-81, 1991.
    [78] A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In Vivo Optical Coherence Tomography," American Journal of Ophthalmology, vol. 116, pp. 113-114, 1993.
    [79] E. A. Swanson, J. A. Izatt, C. P. Lin, J. G. Fujimoto, J. S. Schuman, M. R. Hee, et al., "In vivo retinal imaging by optical coherence tomography," Optics Letters, vol. 18, pp. 1864-1866, 1993.
    [80] J. A. Izatt and M. A. Choma, "Theory of Optical Coherence Tomography," in Optical Coherence Tomography, W. Drexler and J. Fujimoto, Eds., ed: Springer Berlin Heidelberg, 2008, pp. 47-72.
    [81] A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Optics Communications, vol. 117, pp. 43-48, 1995.
    [82] M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," Journal of Biomedical Optics, vol. 7, pp. 457-463, 2002.
    [83] J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Optics Letters, vol. 28, pp. 2067-2069, 2003.
    [84] R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Optics Express, vol. 11, pp. 889-894, 2003.
    [85] I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, et al., "Ultrahigh-resolution optical coherence tomography using continuum generation in an air?silica microstructure optical fiber," Optics Letters, vol. 26, pp. 608-610, 2001.
    [86] V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, "Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm," Biomedical Optics Express, vol. 1, pp. 176-185, 2010.
    [87] H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 µm," Optics Letters, vol. 30, pp. 1171-1173, 2005.
    [88] S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, "Ultrahigh-Resolution Optical Coherence Tomography in 1.7 µm Region with Fiber Laser Supercontinuum in Low-Water-Absorption Samples," Applied Physics Express, vol. 4, p. 052501, 2011.
    [89] M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300‐nm ring laser source," Journal of Biomedical Optics, vol. 10, pp. 044009-044009-6, 2005.
    [90] X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, et al., "High average power, strictly all-fiber supercontinuum source with good beam quality," Optics Letters, vol. 36, pp. 2659-2661, 2011.
    [91] C. Hongwei, C. Zilun, C. Shengping, H. Jing, and L. Qisheng, "Hundred-Watt-Level, All-Fiber-Integrated Supercontinuum Generation from Photonic Crystal Fiber," Applied Physics Express, vol. 6, p. 032702, 2013.
    [92] S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, "Generation of double-scale femto/pico-secondoptical lumps in mode-locked fiber lasers," Optics Express, vol. 17, pp. 20707-20713, 2009.
    [93] S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, "Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation," Opt. Express, vol. 20, pp. 27447-27453, 2012.
    [94] C. Lecaplain and P. Grelu, "Rogue waves among noiselike-pulse laser emission: An experimental investigation," Physical Review A, vol. 90, p. 013805, 2014.
    [95] Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, "On the formation of noise-like pulses in fiber ring cavity configurations," Optical Fiber Technology, vol. 20, pp. 575-592, 2014.
    [96] S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength," Optics Express, vol. 11, pp. 3598-3604, 2003.
    [97] Z. Yaqoob, J. Wu, and C. Yang, "Spectral domain optical coherence tomography: a better OCT imaging strategy," Biotechniques, vol. 39, p. 0, 2005.
    [98] M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Optics express, vol. 12, pp. 2404-2422, 2004.
    [99] B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, et al., "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Optics Express, vol. 12, pp. 2435-2447, 2004.
    [100] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Optics Letters, vol. 22, pp. 340-342, 1997.
    [101] B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser," Optics Letters, vol. 22, pp. 1704-1706, 1997.
    [102] U. H. P. Haberland, V. Blazek, and H. J. Schmitt, "Chirp Optical Coherence Tomography of Layered Scattering Media," Journal of Biomedical Optics, vol. 3, pp. 259-266, 1998.
    [103] S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Optics Express, vol. 11, pp. 2953-2963, 2003.
    [104] K. Goda, K. K. Tsia, and B. Jalali, "Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena," Nature, vol. 458, pp. 1145-1149, 2009.
    [105] J. Chou, D. R. Solli, and B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Applied Physics Letters, vol. 92, p. 111102, 2008.
    [106] T. T. Wong, A. K. Lau, K. K. Wong, and K. K. Tsia, "Optical time-stretch confocal microscopy at 1 µm," Opt Lett, vol. 37, pp. 3330-2, 2012.
    [107] S. Moon and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Optics Express, vol. 14, pp. 11575-11584, 2006.
    [108] T. Huo, J. Zhang, J.-g. Zheng, T. Chen, C. Wang, N. Zhang, et al., "Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography," Optics Letters, vol. 39, pp. 247-250, 2014.
    [109] S. H. Xiang, L. Zhou, and J. M. Schmitt, "Speckle noise reduction for optical coherence tomography," 1998, pp. 79-88.
    [110] M. FranÇOn, "CHAPTER VIII - Speckle in Astronomy," in Laser Speckle and Applications in Optics, M. FranÇOn, Ed., ed: Academic Press, 1979, pp. 111-120.
    [111] M. FranÇOn, "CHAPTER X - Various Applications of Speckle," in Laser Speckle and Applications in Optics, M. FranÇOn, Ed., ed: Academic Press, 1979, pp. 133-147.
    [112] J. W. Goodman, "Some fundamental properties of speckle," Journal of the Optical Society of America, vol. 66, pp. 1145-1150, 1976.
    [113] J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in Optical Coherence Tomography," Journal of Biomedical Optics, vol. 4, pp. 95-105, 1999.
    [114] S. M. Gehlbach and F. G. Sommer, "Frequency Diversity Speckle Processing," Ultrasonic Imaging, vol. 9, pp. 92-105, 1987.
    [115] Y. Du, G. Liu, G. Feng, and Z. Chen, "Speckle reduction in optical coherence tomography images based on wave atoms," J Biomed Opt, vol. 19, p. 056009, 2014.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE