研究生: |
陳家穎 Chen, Chia-Ying |
---|---|
論文名稱: |
物理老化對左旋聚乳酸及其與右旋聚乳酸消旋摻合體冷結晶行為之影響 Effects of Physical Aging on Cold-crystallization Behavior of Poly(L-lactide) and Its Racemic Blend with Poly(D-lactide) |
指導教授: |
蘇安仲
Su, An-Chung |
口試委員: |
鄭有舜
U-Ser Jeng 阮至正 Jrjeng Ruan 童世煌 Shih-Huang Tung 廖文彬 Wen-Bin Liau |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 80 |
中文關鍵詞: | 物理老化 、左旋聚乳酸 、等溫冷結晶 |
外文關鍵詞: | physical aging, solid-solid transformation, precursory mesophase |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
By using simultaneous small/wide-angle X-ray scattering (SAXS/WAXS), Fourier-transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC), we have investigated in detail the effects of physical aging on cold-crystallization behavior of enantiomeric PLLA α′ phase and racemic PLLA/PDLA βc phase. We firstly found that the α′ crystals are intrinsically metastable phase which continuously increasing packing density towards the α form. It release very limited latent heat upon emergence and then underwent continuous perfection for decreasing lattice spacing during which a majority of latent heat was released. Small amount of the better-packed α′ crystals will transform to smaller α form when the lattice parameters were closer but still finitely different from those of the α phase, implying the transformation is achieved via a first-order transition.
We show from DSC traces that annealing of amorphous PLLA below the glass transition temperature (Tg) increases the crystallization rate and shortens induction period during cold-crystallization at 80 °C. Emergence of (110)/(200) reflection of α′ crystals during crystallization was earlier in physically aged PLLA than the as-quenched counterpart. Time evolution of the SAXS profile generally shows shifting/intensification of interparticle correlation peak toward higher q range with crystallization time, indicating increased nanograin population and hence dominantly sporadic nucleation. From dispersed-ellipsoids model fitting, the sporadic nucleation rate for aged PLLA deduced from the slope of np vs. tc data is 1.4 times the value of the as-quenched case in the beginning of crystallization. Results from FTIR indicate that the shortening in crystallization induction period and faster in crystallization kinetics for aged PLLA was caused by the preformed α′ precursor with interchain methylene-methylene interaction in physically aged specimen. We conclude that these precursors subsequently transform into nuclei of α′ crystals upon heating above Tg without consuming the amorphous phase in the beginning, resulting in increased sporadic nucleation rate (as compared to the as-quenched glass) and shortened induction period during cold-crystallization.
By aging the polylactide mixture with weight ratio of PLLA to PDLA equal to 1:1, the α′ precursor instead of βc precursor (paired 32/31 helices) will formed during aging, as illustrated in the unchanged peak position of asymmetric C-H stretching band at ca. 2995 cm-1. We discover that the aged specimen can produce more paired 32/31 helices in the induction period as the βc precursor and increase the sporadic nucleation rate. In addition, the crystallization always begins from decreasing the FTIR amorphous band at 1267 cm-1 and increasing the interchain interaction band at 1210 cm-1, followed by the emergence of the paired 32/31 helices no matter whether the sample is aged or not. This is contrary to the case of physically aged pure PLLA sample in which formation of 107-helix precede the consumption of amorphous phase. This implies that α′ precursory may act as the nucleating agent of βc crystal and facilitate the formation of regular paired 32/31 helices from the amorphous matrix and subsequent nucleation process. We further demonstrated that the structure form during aging are hardly removed even the lower heating rate (5 °C /min) is apply when dynamic heating experiment was conducted. The result reveals that the physically aged sample nucleate at lower temperature (82.4 °C) compared with the as-quenched counterpart (85.6 °C). The earlier nucleation of aged sample is directly related to higher level of interchain interaction contributed from α′ precursory before nucleation of βc phase.
By using simultaneous small/wide-angle X-ray scattering (SAXS/WAXS), Fourier-transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC), we have investigated in detail the effects of physical aging on cold-crystallization behavior of enantiomeric PLLA α′ phase and racemic PLLA/PDLA βc phase. We firstly found that the α′ crystals are intrinsically metastable phase which continuously increasing packing density towards the α form. It release very limited latent heat upon emergence and then underwent continuous perfection for decreasing lattice spacing during which a majority of latent heat was released. Small amount of the better-packed α′ crystals will transform to smaller α form when the lattice parameters were closer but still finitely different from those of the α phase, implying the transformation is achieved via a first-order transition.
We show from DSC traces that annealing of amorphous PLLA below the glass transition temperature (Tg) increases the crystallization rate and shortens induction period during cold-crystallization at 80 °C. Emergence of (110)/(200) reflection of α′ crystals during crystallization was earlier in physically aged PLLA than the as-quenched counterpart. Time evolution of the SAXS profile generally shows shifting/intensification of interparticle correlation peak toward higher q range with crystallization time, indicating increased nanograin population and hence dominantly sporadic nucleation. From dispersed-ellipsoids model fitting, the sporadic nucleation rate for aged PLLA deduced from the slope of np vs. tc data is 1.4 times the value of the as-quenched case in the beginning of crystallization. Results from FTIR indicate that the shortening in crystallization induction period and faster in crystallization kinetics for aged PLLA was caused by the preformed α′ precursor with interchain methylene-methylene interaction in physically aged specimen. We conclude that these precursors subsequently transform into nuclei of α′ crystals upon heating above Tg without consuming the amorphous phase in the beginning, resulting in increased sporadic nucleation rate (as compared to the as-quenched glass) and shortened induction period during cold-crystallization.
By aging the polylactide mixture with weight ratio of PLLA to PDLA equal to 1:1, the α′ precursor instead of βc precursor (paired 32/31 helices) will formed during aging, as illustrated in the unchanged peak position of asymmetric C-H stretching band at ca. 2995 cm-1. We discover that the aged specimen can produce more paired 32/31 helices in the induction period as the βc precursor and increase the sporadic nucleation rate. In addition, the crystallization always begins from decreasing the FTIR amorphous band at 1267 cm-1 and increasing the interchain interaction band at 1210 cm-1, followed by the emergence of the paired 32/31 helices no matter whether the sample is aged or not. This is contrary to the case of physically aged pure PLLA sample in which formation of 107-helix precede the consumption of amorphous phase. This implies that α′ precursory may act as the nucleating agent of βc crystal and facilitate the formation of regular paired 32/31 helices from the amorphous matrix and subsequent nucleation process. We further demonstrated that the structure form during aging are hardly removed even the lower heating rate (5 °C /min) is apply when dynamic heating experiment was conducted. The result reveals that the physically aged sample nucleate at lower temperature (82.4 °C) compared with the as-quenched counterpart (85.6 °C). The earlier nucleation of aged sample is directly related to higher level of interchain interaction contributed from α′ precursory before nucleation of βc phase.
1. Haward, R. N.; Young, R. J. (1997). The physics of glassy polymers, Springer.
2. Zallen, R. (2008). The physics of amorphous solids, John Wiley & Sons.
3. Celli, A.; Scandola, M. Polymer 1992, 33, 2699-2703.
4. Pan, P.; Zhu, B.; Inoue, Y. Macromolecules 2007, 40, 9664-9671.
5. Yoshioka, T.; Kawazoe, N.; Tateishi, T.; Chen, G. Macromolecular Materials and Engineering 2011, 296, 1028-1034.
6. Cai, H.; Dave, V.; Gross, R. A.; McCarthy, S. P. Journal of Polymer Science Part B: Polymer Physics 1996, 34, 2701-2708.
7. de Candia, F.; Russo, R.; Vittoria, V. Macromolecular Chemistry and Physics 1994, 195, 735-741.
8. McGonigle, E.-A.; Daly, J.; Gallagher, S.; Jenkins, S.; Liggat, J.; Olsson, I.; Pethrick, R. Polymer 1999, 40, 4977-4982.
9. Lu, X.; Hay, J. Polymer 2000, 41, 7427-7436.
10. Tsuji, H.; Sawada, M. Journal of Applied Polymer Science 2010, 116, 1190-1196.
11. Hernández Sánchez, F.; Molina Mateo, J.; Romero Colomer, F.; Salmerón Sánchez, M.; Gómez Ribelles, J.; Mano, J. Biomacromolecules 2005, 6, 3283-3290.
12. Zhang, T.; Hu, J.; Duan, Y.; Pi, F.; Zhang, J. The Journal of Physical Chemistry B 2011, 115, 13835-13841.
13. Pan, P.; Liang, Z.; Zhu, B.; Dong, T.; Inoue, Y. Macromolecules 2008, 41, 8011-8019.
14. Miyata, T.; Masuko, T. Polymer 1997, 38, 4003-4009.
15. Wasanasuk, K.; Tashiro, K. Polymer 2011, 52, 6097-6109.
16. Zhang, J.; Duan, Y.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Macromolecules 2005, 38, 8012-8021.
17. Di Lorenzo, M. L. Polymer 2001, 42, 9441-9446.
18. Di Lorenzo, M. L. European Polymer Journal 2005, 41, 569-575.
19. Pan, P.; Kai, W.; Zhu, B.; Dong, T.; Inoue, Y. Macromolecules 2007, 40, 6898-6905.
20. Cho, T.-Y.; Strobl, G. Polymer 2006, 47, 1036-1043.
21. Kawai, T.; Rahman, N.; Matsuba, G.; Nishida, K.; Kanaya, T.; Nakano, M.; Okamoto, H.; Kawada, J.; Usuki, A.; Honma, N. Macromolecules 2007, 40, 9463-9469.
22. Schultz, J.; Lin, J.; Hendricks, R.; Petermann, J.; Gohil, R. Journal of Polymer Science: Polymer Physics Edition 1981, 19, 609-620.
23. Imai, M.; Kaji, K.; Kanaya, T. Physical review letters 1993, 71, 4162-4165.
24. Fougnies, C.; Damman, P.; Villers, D.; Dosiere, M.; Koch, M. Macromolecules 1997, 30, 1385-1391.
25. Terrill, N. J.; Fairclough, P. A.; Towns-Andrews, E.; Komanschek, B. U.; Young, R. J.; Ryan, A. J. Polymer 1998, 39, 2381-2385.
26. Ryan, A.; Terrill, N.; Olmsted, P.; Poon, W. K. Faraday Discussions 1999, 112, 13-29.
27. Wang, Z.-G.; Hsiao, B.; Sirota, E.; Srinivas, S. Polymer 2000, 41, 8825-8832.
28. Heeley, E. L.; Poh, C. K.; Li, W.; Maidens, A.; Bras, W.; Dolbnya, I. P.; Gleeson, A. J.; Terrill, N. J.; Fairclough, J. P. A.; Olmsted, P. D. Faraday discussions 2003, 122, 343-361.
29. Mano, J. F.; Wang, Y.; Viana, J. C.; Denchev, Z.; Oliveira, M. J. Macromolecular Materials and Engineering 2004, 289, 910-915.
30. Hikosaka, M.; Watanabe, K.; Okada, K.; Yamazaki, S. Adv. Polym. Sci. 2005, 191, 137–186.
31. Kaji, K.; Nishida, K.; Kanaya, T.; Matsuba, G.; Konishi, T.; Imai, M. Adv. Polym. Sci. 2005,
191, 187–240.
32. Chen, S. H.; Wu, Y. H.; Su, C. H.; Jeng, U.; Hsieh, C. C.; Su, A. C.; Chen, S. A. Macromolecules 2007, 40, 5353-5359.
33. Su, C.; Jeng, U.; Chen, S.; Lin, S.; Wu, W.; Chuang, W.-T.; Tsai, J.; Su, A. Macromolecules 2009, 42, 6656-6664.
34. Chuang, W.-T.; Su, W.-B.; Jeng, U. S.; Hong, P.-D.; Su, C.-J.; Su, C.-H.; Huang, Y.-C.; Laio, K.-F.; Su, A.-C. Macromolecules 2011, 44, 1140-1148.
35. Yang, C.-F.; Huang, Y.-F.; Ruan, J.; Su, A.-C. Macromolecules 2012, 45, 872-878.
36. Lund, R.; Alegria, A.; Goitandia, L.; Colmenero, J.; Gonzalez, M. A.; Lindner, P. Macromolecules 2008, 41, 1364-1376.
37. Stoclet, G.; Seguela, R.; Lefebvre, J.; Elkoun, S.; Vanmansart, C. Macromolecules 2010, 43, 1488-1498.
38. Zhang, J.; Duan, Y.; Domb, A. J.; Ozaki, Y. Macromolecules 2010, 43, 4240-4246.
39. Androsch, R.; Schick, C.; Di Lorenzo, M. L. Macromolecular Chemistry and Physics 2014, 215, 1134-1139.
40. Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A. J. Macromolecules 2008, 41, 1352-1357.
41. Fischer, E. W.; Sterzel, H. J.; Wegner, G. Colloid Polym. Sci. 1973, 251, 980–990.
42. Van Krevelen, Properties of Polymers, 3rd Ed., Elsevier: Amsterdam, 1990; Ch. 4.
43. Gilding, D.; Reed, A. Polymer 1979, 20, 1459-1464.
44. Kalb, B.; Pennings, A. Polymer 1980, 21, 607-612.
45. Cohn, D.; Younes, H.; Marom, G. Polymer 1987, 28, 2018-2022.
46. Loomis, G. L.; Murdoch, J. R.; Gardner, K. H. Polym. Prepr. 1990, 39(2), 55.
47. Sarasua, J.-R.; Prud'Homme, R. E.; Wisniewski, M.; Le Borgne, A.; Spassky, N. Macromolecules 1998, 31, 3895-3905.
48. Chen, S.; Su, A.; Su, C.; Chen, S. The Journal of Physical Chemistry B 2006, 110, 4007-4013.
49. Eling, B.; Gogolewski, S.; Pennings, A. Polymer 1982, 23, 1587-1593.
50. Ikada, Y.; Tsuji, H. Macromolecular rapid communications 2000, 21, 117-132.
51. Cam, D.; Hyon, S.-h.; Ikada, Y. Biomaterials 1995, 16, 833-843.
52. Tsuji, H.; Ikada, Y. Journal of applied polymer science 1997, 63, 855-863.
53. Tsuji, H.; Nakahara, K.; Ikarashi, K. Macromolecular Materials and Engineering 2001, 286, 398-406.
54. Roe, R. J.; Curro, J. Macromolecules 1983, 16, 428-434.
55. Song, H. H.; Roe, R. J. Macromolecules 1987, 20, 2723-2732.
56. Pan, P.; Zhu, B.; Dong, T.; Yazawa, K.; Shimizu, T.; Tansho, M.; Inoue, Y. The Journal of chemical physics 2008, 129, 184902.
57. Ellis, A.; Gordon, D.; King, S.; Jenkins, M. Physica B: Condensed Matter 2006, 385, 514-516.
58. Cho, J. W.; Woo, K. S. Journal of Polymer Science Part B: Polymer Physics 2001, 39, 1920-1927.
59. Na, B.; Zou, S.; Lv, R.; Luo, M.; Pan, H.; Yin, Q. The Journal of Physical Chemistry B 2011, 115, 10844-10848.
60. Zhang, J.; Tsuji, H.; Noda, I.; Ozaki, Y. The Journal of Physical Chemistry B 2004, 108, 11514-11520.
61. Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S. H. Macromolecules 1987, 20, 904-906.
62. Okihara, T.; Tsuji, M.; Kawaguchi, A.; Katayama, K.-I.; Tsuji, H.; Hyon, S.-H.; Ikada, Y. Journal of Macromolecular Science, Part B: Physics 1991, 30, 119-140.
63. Tsuji, H. Macromolecular bioscience 2005, 5, 569-597.
64. Tsuji, H.; Tezuka, Y. Biomacromolecules 2004, 5, 1181-1186.
65. Sheu, E. Y. Physical Review A 1992, 45, 2428.
66. Roe, R.-J.; Roe, R. (2000). Methods of X-ray and neutron scattering in polymer science, Oxford University Press New York.
67. Krikorian, V.; Pochan, D. J. Macromolecules 2005, 38, 6520-6527.
68. Xing, Q.; Zhang, X.; Dong, X.; Liu, G.; Wang, D. Polymer 2012, 53, 2306-2314.
69. Zhang, J.; Sato, H.; Tsuji, H.; Noda, I.; Ozaki, Y. Macromolecules 2005, 38, 1822-1828.
70. Sarasua, J.-R.; Rodríguez, N. L.; Arraiza, A. L.; Meaurio, E. Macromolecules 2005, 38, 8362-8371.
71. Schmidt, S. C.; Hillmyer, M. A. Journal of Polymer Science Part B: Polymer Physics 2001, 39, 300-313.
72. Doi, M. (1988). The theory of polymer dynamics, oxford university press.
73. Tsuji, H.; Ikada, Y. Macromolecules 1993, 26, 6918-6926.
74. Su, C. H.; Jeng, U.; Chen, S. H.; Lin, S. J.; Ou, Y. T.; Chuang, W. T.; Su, A. C. Macromolecules 2008, 41, 7630-7636.
75. Wang, C.; Lin, C.-C.; Chu, C.-P. Polymer 2005, 46, 12595-12606.
76. Su, C. H.; Jeng, U.; Chen, S. H.; Cheng, C. Y.; Lee, J. J.; Lai, Y. H.; Su, W. C.; Tsai, J. C.; Su, A. C. Macromolecules 2009, 42, 4200-4207.
77. Kobayashi, M.; Nakaoki, T.; Ishihara, N. Macromolecules 1989, 22, 4377-4382.
78. Matsuba, G.; Kaji, K.; Nishida, K.; Kanaya, T.; Imai, M. Macromolecules 1999, 32, 8932-8937.