研究生: |
林盟傑 Meng-Jie Lin |
---|---|
論文名稱: |
非拋物型有效質量近似二維連續薛丁格方程特徵值問題 Eigenvalue Problems for Two-Dimensional Continuous Schrödinger Equation with Non-parabolic Effective Mass Approximation |
指導教授: |
林文偉
Wen-Wei Lin |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2003 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 34 |
中文關鍵詞: | 量子線 、薛丁格方程 、能階 、波函數 、Bessel氏方程式 、修正型Bessel氏方程式 |
外文關鍵詞: | quantum wire, Schrödinger equation, energy states, wave functions, Bessel functions, modified Bessel functions |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇文章致力於研究非拋物型有效質量近似二維連續薛丁格方程特徵值問題。我們主要結果是著重在關注被鎖在量子井中能量態的個數。至於,文章的編排方式,我一開始先來介紹關於這個欲處理問題的來源和出產。接著,引進Bessel氏方程式和修正型Bessel氏方程式,同時也羅列出和上述兩方程式相關且對研究有幫助的性質。接下來的工作,我建構出一個特徵方程式,此特徵方程式的根正好是我所處理的問題的特徵值,故特稱為特徵方程式。這個特徵方程式是整篇文章的一個重要關鍵式子。因為我們能藉由它完成一些主要的結果。最後,我分別利用兩節的篇幅來討論特徵方程式的重要性質並大略的勾勒出其圖形,並於文章末節給出了我所完成的一些重要結果。
This paper is devoted to investigate the two-dimensional continuous Schr dinger equation with non-parabolic effective mass approximation.
Our results primarily concern the number of energy states lying in the confinement potential well.
The article is organized as follows. First, we introduce the derivation of the model problem, the Bessel’s equation and the modified Bessel’s equation. At the same time, we also list some useful properties of the Bessel functions and the modified Bessel functions. Next, we construct a characteristic equation whose roots are eigenvalues of the model problem. It is a key equation. We have to use it to finish some main results. Finally, we discuss some properties of the characteristic equation, roughly sketch the graph of the characteristic equation and state the main results that we have finished.
[1] Fred Brauer and John A. Nohel, Ordinary
Differential Equations , W. A.Benjamin , Inc,
1967, 167–177.
[2] Paul C. W. Davies and David S. Betts, Quantum
Mechanics, 2nd, Chapman and Hall, 1994.
[3] Paul Harrison, Quantum Wells, Wires and Dots :
Theoretical and Computational Physics,
John Wiley, 2000.
[4] R. Kent Nagle, Edward B. Saff, Fundamentals of
Differential Equations and Boundary Value
Problems, 2nd, Addison-Wesley Press, 1996,
497–499, 679–680.
[5] N. S. Koshlyakov, M. M Smirnov and E. B Gliner,
Differential Equations of Mathematical Physics,
North-Holland Publishing Company, 1964, 161–179.
[6] Richard Turton, The Quantum Dot, Oxford
University Press, 1996.
[7] G. N. Watson, A Treatise on the Theory of Bessel
Functions, 2nd, 1958.
[8] Wen-Wei Lin, Eigenvalue Problem for One-
dimensional Discrete Schrodiger Operators with
Symmetric Boundary Conditions,
SIAM Matrix Anal.Appl.,Vol. 23, No. 2 (2001),
pp. 524-533. (with J. Juang and S. F. Shieh)