研究生: |
游振威 Yu, Chen-Wei |
---|---|
論文名稱: |
Greedy Algorithms for Actor Redeployment in Wireless Sensor-Actor Networks 在無線傳感器網路利用貪婪演算法來達成傳感器的重新佈建 |
指導教授: |
蔡明哲
Tsai, Ming-Jer |
口試委員: |
林靖茹
劉炳宏 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 36 |
中文關鍵詞: | 無線傳感器網路 、感測器覆蓋問題 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在無線傳感器網路(WSAN)中,當感測器(sensor)偵測到事件發生時,傳感器(actor)必須即時提供服務來處理事件。因此傳感器的佈建方式對於無線傳感器網路的效能有非常大的影響。在許多可能的情況下,傳感器會毀損,或是正忙於處理事件,因此無法繼續覆蓋原本的感測器,這時原本被傳感器覆蓋的感測器就無法即時將資料傳給傳感器。基於這個情況,我們需要將傳感器重新佈建。在這篇論文中,我們研究傳感器重新佈建的方法來達到最多感測器的覆蓋以及達到能減少最多沒被覆蓋感測器到最近有被覆蓋的感測器的距離。我們證明了這兩個問題的困難度都是NP-完全,並證明使用貪婪演算法來處理這兩個問題得到的答案與最佳解的比值都小於2。實驗也顯示出使用貪婪演算法可以達到夠好的效能,也佐證了我們的分析。
Inawirelesssensor-actornetwork,anactorusuallyhastoprovideservicesassoonastheactorreceivestheeventsignalsfromthesensors.Therefore,theperformanceofawirelesssensor-actornetworkdependsontheactordeployment.Inmanycircum-stances,actorsmayfailorgoouttodealwithevents,andthus,thesensorscoveredbythemissingactorscouldbeunreachableintime.Thisintroducesthenecessityofactorredeployment.Inthispaper,westudytheproblemsofredeployingactorstomaximizethenumberofsensorsabletobecoveredbyactorsandtomaximizethedecreaseoftheresidualdistancesofsensors,respectively.BothproblemsareshowntobeNP-complete.Additionally,weprovethatthegreedyalgorithmforeachprob-lemhasanapproximationratioof2.Simulationsshowthatthegreedyalgorithmforeachproblemperformswell.Keywords:wirelesssensor-actornetwork,coverage
[1] T. Melodia, D. Pompili, and I. F. Akyildiz, “Handling mobility in wireless sensor and actor networks,” IEEE Transactions on Mobile Computing, vol. 9, pp. 160–173, 2010.
[2] I. A. Ismail, I. F. Akyildiz, and I. H. Kasimoglu, “Wireless sensor and actor networks: research challenges,” Ad Hoc Networks, vol. 2, pp. 351–367, 2004.
[3] K. Akkaya and M. Younis, “COLA: A coverage and latency aware actor placement for wireless sensor and actor networks,” in IEEE VTC, 2006, pp. 1–5.
[4] X.-P. Ren and Z.-X. Cai, “A distributed actor deployment algorithm for maximum connected coverage in WSAN,” in ICNC, 2009, pp. 283–287.
[5] K. Akkaya and S. Janapala, “Maximizing connected coverage via controlled actor relocation in wireless sensor and actor networks,” Computer Networks, vol. 52,
pp. 2779–2796, 2008.
[6] P. Basu and J. Redi, “Movement control algorithms for realization of faulttolerant ad hoc robot networks,” IEEE Networks, vol. 18, pp. 36–44, 2004.
[7] A. A. Abbasi, M. Younis, and K. Akkaya, “Movement-assisted connectivity restoration in wireless sensor and actor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 20, pp. 1366–1379, 2009.
[8] S. Wang, X. Mao, S.-J. Tang, X. Li, J. Zhao, and G. Dai, “On movementassisted connectivity restoration in wireless sensor and actor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, pp. 687–694, 2011.
[9] A. A. Abbasi, M. Younis, and U. Baroudi, “Restoring connectivity in wireless sensor-actor networks with minimal topology changes,” in IEEE ICC, 2010, pp.1550–3607.
[10] K. Akkaya, A. Thimmapuran, F. Senel, and S. Uludag, “Distributed recovery of actor failures in wireless sensor and actor networks,” in IEEE WCNC, 2008, pp. 2355–2360.
[11] A. Zamanifar, O. Kashefi, and M. Sharifi, “AOM: An efficient approach to restore actor-actor connectivity in wireless sensor and actor networks,” Computer Networks and Communications, vol. 1, pp. 61–72, 2009.
[12] K. Akkaya, F. Senel, A. Thimmapuram, and S. Uludag, “Distributed recovery from network partitioning in movable sensor/actor networks via controlled mobility,” IEEE Transactions on Computers, vol. 59, pp. 258–271, 2010.
[13] J. Wu, S. Yang, and M. Cardei, “On maintaining sensor-actor connectivity in wireless sensor and actor networks,” in IEEE INFOCOM, 2008, pp. 888–896.
[14] X. Bai, S. Kumar, D. Xuan, Z. Yun, and T. H. Lai, “Deploying wireless sensors to achieve both coverage and connectivity,” in ACM MOBIHOC, 2006, pp. 131–142.
[15] C.-F. Huang, Y.-C. Tseng, and H.-L. Wu, “Distributed protocols for ensuring both coverage and connectivity of a wireless sensor network,” ACM Transactions on Sensor Networks, vol. 3, pp. 1–24, 2007.
[16] J. L. Bredin, E. D. Demaine, M. T. Hajiaghayi, and D. Rus, “Deploying sensor networks with guaranteed fault tolerance,” IEEE/ACM Transactions on Networking, vol. 18, pp. 216–228, 2010.
[17] W.-C. Ke, B.-H. Liu, and M.-J. Tsai, “Efficient algorithm for constructing minimum size wireless sensor networks to fully cover critical square grids,” IEEE
Transactions on Wireless Communications, vol. 10, pp. 1154–1164, 2011.
[18] H. Zhang and J. C. Hou, “Maintaining sensing coverage and connectivity in large sensor networks,” Ad Hoc & Sensor Wireless Networks, vol. 1, pp. 89–124, 2004.
[19] N. Tamboli and M. Younis, “Coverage-aware connectivity restoration in mobile sensor networks,” in IEEE International Conference on Communications, 2009,
pp. 1–5.
[20] M. Younis and R. Waknis, “Connectivity restoration in wireless sensor networks using steiner tree approximations,” in he IEEE Global Communications Confer-
ence, 2010, pp. 1–5.
[21] U. Feige, “A threshold of ln n for approximating set cover,” Journal of the ACM, vol. 45, pp. 634–652, 1998.
[22] G. Wang, G. Cao, T. L. Porta, and W. Zhang, “Sensor relocation in mobile sensor networks,” in International Conference on Communications, 2005, pp. 2302–2312.
[26] L. Bin, R. Fengyuan, L. Chuang, Y. Yaqin, Z. Rongfei, and W. Hao, “The redeployment issue in underwater sensor networks,” in IEEE GLOBECOM, 2008, pp. 1–6.