研究生: |
洪廉育 Hung, Lien-Yu |
---|---|
論文名稱: |
整合型微流體晶片系統在分子生物標誌之篩選與應用 Application and Screening of Molecular Biomarkers on Integrated Microfluidic Systems |
指導教授: |
李國賓
Lee, Gwo-Bin |
口試委員: |
林哲信
陳宗嶽 吳旻憲 王玉麟 曾繁根 張晃猷 李國賓 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 207 |
中文關鍵詞: | 微流體 、生物標誌 、流感 、奈米粒子 、指數增幅型配子系統演化法 、卵巢癌 、癌症幹細胞 |
外文關鍵詞: | Microfluidics, Biomarkers, Influenza, Nanoparticles, SELEX, Ovarian cancer, Cancer stem cells |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微流體系統可以在僅使用少量的樣本及試劑下,完成高解析度的分離與高靈敏的偵測,並有低成本、分析時間短及實驗之硬體裝置不佔空間的優點。在微流體系統利用具生物相容性之材質製作後,越來越多分子生物學分析或是醫學的診斷可與微流體系統結合,可達到快速與高靈敏的偵測
此論文主要進行整合型微流體晶片系統在檢測診斷分子生物標誌之應用與篩選。首先是一整合型微流體系統用於流感病毒感染之快速檢測,其中包含負壓氣動式元件與控制模組,並利用磁珠螢光免疫檢測進行終端光學檢測。在此應用的分子生物標誌為蛋白質層級之生物標誌,主要為專一性小鼠 A 或 B 型流感病毒核蛋白之單株抗體。此系統能夠成功地在單一次晶片測試中於 15 分鐘內自動化檢測 A 與 B 型流感病毒。更甚者,在利用 86 組病人樣本診斷中,此系統可達到 84.8% 的靈敏度與 75.0% 的專一性。接著為了增進磁珠螢光免疫檢測的光學訊號,我們應用尺寸為 100 奈米的氧化錳鐵之磁性奈米粒子於流感病毒感染的快速檢測。於奈米粒子上接合 A 型流感病毒核蛋白之單株抗體後,並整合層疊式表面修飾流程明顯地減少奈米粒子非專一性吸附之背景訊號。與尺寸為 4.5 微米之磁珠比較,氧化錳鐵之磁性奈米粒子的光學訊號提升了兩倍,顯示此微流體平台將可能應用於感染性疾病的快速檢測。
由於抗體有著昂貴、不易保存與生產批次間的差異,因此體外篩選方法對於找尋高親和性或高疾病檢測準確性的生物標誌扮演了重要的角色。此研究利用指數增幅型配子系統演化法 (SELEX) 進行癌症專一性之適體篩選。不同組織學分類的卵巢癌細胞,包含: BG-1, TOV112D, IGROV1 與 TOV-21G 細胞株,被應用在此適體篩選流程,研究成功篩選獲得 13 條卵巢癌專一適體,其中包含四條亮細胞專一適體、七條內膜樣細胞專一適體與兩條漿液性細胞專一適體。本研究成功發展一能夠進行多種細胞株且高通量篩選之自動化整合型微流體系統。除此之外,近期研究發現癌細胞中存在著癌症幹細胞,其為一小群具有自我更新與無限生長能力之癌細胞,可能在癌症治療中扮演著關鍵的地位。此論文再針對大腸結腸癌幹細胞與大腸結腸癌細胞進行專一性適體篩選。篩選獲得八條大腸結腸癌幹細胞/大腸結腸癌專一適體。其中三條適體之解離常數分別為 27.4、28.5 與 12.3 nM,對其目標細胞具有高親合力。這些篩選獲得的大腸結腸癌幹細胞/大腸結腸癌專一適體生物標誌,將可在個人化醫學或藥物研發有更好的應用與發展。
Microfluidics is a technology to manipulate a small amount of fluids by using well-designed microchannels, microchambers and microdevices. It offers a number of advantages, including low sample/reagent consumption, high-resolution separation, fast detection, high sensitivity, low cost and automation. While the micro-fabrication process uses bio-compliable materials, increasing numbers of molecular biological and medical diagnosis could be performed on microfluidic systems for rapid and accurate diagnosis. In this work, we presented the application and screening of molecular biomarkers for disease diagnosis on the microfluidic systems. First, a new integrated microfluidic system for rapid detection of influenza infections was developed, which integrated a suction-type, a pneumatic-driven microfluidic control module, a magnetic bead-based fluorescent immunoassay and an end-point optical detection module. The molecular biomarker used was a protein-based biomarker- the specific mouse anti-influenza nucleoprotein (NP)-A mAb or anti-NP-B mAb. This system could successfully distinguish between influenza A and B using a single chip within 15 minutes automatically. Furthermore, the results of diagnostic assays from 86 patient specimens have demonstrated that this system has 84.8% sensitivity and 75.0% specificity. Then, in order to improve the optical signal of a magnetic bead-based FIA, we produced MnFe2O4 magnetic nanoparticles around 100 nanometer for diagnostic applications. After the nanoparticles were coated with anti-influenza-NP-A mAbs, we further adopted a layer-by-layer surface modification process to significantly reduce the background noise due to non-specific adhesion of nanoparticles. When compared with the 4.5-µm magnetic beads, the optical signals of the MnFe2O4 nanoparticles were twice as sensitive, providing a promising platform for rapidly diagnosing infectious diseases.
Because antibodies are relatively expensive, hard to preserve and may vary from batch to batch fabrication, in-vitro screening methods for high-affinity biomarker searching attract intensive attention recently. Among them, systematic evolution of ligands by exponential enrichment (SELEX) has been explored extensively. In this work, we used SELEX for cancer-specific aptamer screening. The different histologically classified ovarian cancer cells, BG-1, TOV112D, IGROV1 and TOV-21G, were applied for aptamer screening. Thirteen OvCa-specific aptamers were successfully selected, including four specific aptamers for the clear-cell-type cell line, seven specific aptamers for the endometrioid-type cell lines, and two specific aptamers for the serous-type cell line. An automatic screening system which enabled one to use multiple cell lines for high-throughput screening work in one integrated microfluidic system was developed. Furthermore, cancer stem cells (CSCs), which are a tiny group of cancer cells having the ability to self-renew and proliferate indefinitely, may play an important role for cancer therapy. In this dissertation, colorectal-CSCs (CR-CSCs) and colorectal cancer (CRC) cells were applied for specific aptamer screening. Eight CR-CSC/CRC-specific aptamers were successfully selected. Three of them showed high affinities towards their target cells with dissociation constants (Kd) of 27.4, 28.5 and 12.3 nM. These selected aptamer biomarkers specifically for CR-CSCs and CRC cells may be further applied for personal medical screening or drug discovery.
1. A. Manz, D.J. Harrison, E.M.J. Verpoorte, J.C. Fettinger, A. Paulus, H. Ludi, and H.M. Widmer, "Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monitoring Systems - Capillary Electrophoresis on a Chip," Journal of Chromatography, 1992, 593(1-2), 253-258.
2. G.M. Whitesides, "The origins and the future of microfluidics," Nature, 2006, 442(7101), 368-373.
3. J.M.K. Ng, I. Gitlin, A.D. Stroock, and G.M. Whitesides, "Components for integrated poly(dimethylsiloxane) microfluidic systems," Electrophoresis, 2002, 23(20), 3461-3473.
4. G.M. Whitesides and A.D. Stroock, "Flexible methods for microfluidics," Physics Today, 2001, 54(6), 42-48.
5. D. Mijatovic, J.C.T. Eijkel, and A. van den Berg, "Technologies for nanofluidic systems: top-down vs. bottom-up - a review," Lab Chip, 2005, 5(5), 492-500.
6. D.A. Czaplewski, J. Kameoka, R. Mathers, G.W. Coates, and H.G. Craighead, "Nanofluidic channels with elliptical cross sections formed using a nonlithographic process," Applied Physics Letters, 2003, 83(23), 4836-4838.
7. J.W. Hong and S.R. Quake, "Integrated nanoliter systems," Nature Biotechnology, 2003, 21(10), 1179-1183.
8. D.B. Weibel, M. Kruithof, S. Potenta, S.K. Sia, A. Lee, and G.M. Whitesides, "Torque-actuated valves for microfluidics," Analytical Chemistry, 2005, 77(15), 4726-4733.
9. N.T. Nguyen and Z.G. Wu, "Micromixers - a review," Journal of Micromechanics and Microengineering, 2005, 15(2), R1-R16.
10. A. Gunther, M. Jhunjhunwala, M. Thalmann, M.A. Schmidt, and K.F. Jensen, "Micromixing of miscible liquids in segmented gas-liquid flow," Langmuir, 2005, 21(4), 1547-1555.
11. P. Garstecki, M.A. Fischbach, and G.M. Whitesides, "Design for mixing using bubbles in branched microfluidic channels," Applied Physics Letters, 2005, 86(24).
12. D.J. Laser and J.G. Santiago, "A review of micropumps," Journal of Micromechanics and Microengineering, 2004, 14(6), R35-R64.
13. K. Strimbu and J.A. Tavel, "What are biomarkers?," Current Opinion in Hiv and Aids, 2010, 5(6), 463-466.
14. A.J. Atkinson, W.A. Colburn, V.G. DeGruttola, D.L. DeMets, G.J. Downing, D.F. Hoth, J.A. Oates, C.C. Peck, R.T. Schooley, B.A. Spilker, J. Woodcock, S.L. Zeger, and B.D.W. Grp, "Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework," Clinical Pharmacology & Therapeutics, 2001, 69(3), 89-95.
15. M. Buyse, D.J. Sargent, A. Grothey, A. Matheson, and A. De Gramont, "Biomarkers and surrogate end points-the challenge of statistical validation," Nature Reviews Clinical Oncology, 2010, 7(6), 309-317.
16. D.F. Ransohoff, "Opinion - Rules of evidence for cancer molecular-marker discovery and validation," Nature Reviews Cancer, 2004, 4(4), 309-314.
17. F.M. Goodsaid, F.W. Frueh, and W. Mattes, "Strategic paths for biomarker qualification," Toxicology, 2008, 245(3), 219-223.
18. J.A. Wagner, S.A. Williams, and C.J. Webster, "Biornarkers and surrogate end points for fit-for-purpose development and regulatory evaluation of new drugs," Clinical Pharmacology & Therapeutics, 2007, 81(1), 104-107.
19. N. Rifai, M.A. Gillette, and S.A. Carr, "Protein biomarker discovery and validation: the long and uncertain path to clinical utility," Nature Biotechnology, 2006, 24(8), 971-983.
20. D.J. Slamon, G.M. Clark, S.G. Wong, W.J. Levin, A. Ullrich, and W.L. Mcguire, "Human-Breast Cancer - Correlation of Relapse and Survival with Amplification of the Her-2 Neu Oncogene," Science, 1987, 235(4785), 177-182.
21. W.J. Catalona, J.P. Richie, F.R. Ahmann, M.A. Hudson, P.T. Scardino, R.C. Flanigan, J.B. Dekernion, T.L. Ratliff, L.R. Kavoussi, B.L. Dalkin, W.B. Waters, M.T. Macfarlane, and P.C. Southwick, "Comparison of Digital Rectal Examination and Serum Prostate-Specific Antigen in the Early Detection of Prostate-Cancer - Results of a Multicenter Clinical-Trial of 6,630 Men," Journal of Urology, 1994, 151(5), 1283-1290.
22. S. Ray, M. Britschgi, C. Herbert, Y. Takeda-Uchimura, A. Boxer, K. Blennow, L.F. Friedman, D.R. Galasko, M. Jutel, A. Karydas, J.A. Kaye, J. Leszek, B.L. Miller, L. Minthon, J.F. Quinn, G.D. Rabinovici, W.H. Robinson, M.N. Sabbagh, Y.T. So, D.L. Sparks, M. Tabaton, J. Tinklenberg, J.A. Yesavage, R. Tibshirani, and T. Wyss-Coray, "Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins," Nat Med, 2007, 13(11), 1359-1362.
23. L.Y. Hung, H.W. Wu, K. Hsieh, and G.B. Lee, "Microfluidic platforms for discovery and detection of molecular biomarkers," Microfluidics and Nanofluidics, 2014, 16(5), 941-963.
24. K.A. Phillips, S. Van Bebber, and A.M. Issa, "Outlook-biomarkers - Diagnostics and biomarker development: priming the pipeline," Nature Reviews Drug Discovery, 2006, 5(6), 463-469.
25. P.M. Ridker, M.J. Stampfer, and N. Rifai, "Novel risk factors for systemic atherosclerosis - A comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease," Jama-Journal of the American Medical Association, 2001, 285(19), 2481-2485.
26. A. Doerr, "Mass spectrometry-based targeted proteomics," Nature Methods, 2013, 10(1), 23-23.
27. R. Patel, A. Tsan, R. Tam, R. Desai, N. Schoenbrunner, T.W. Myers, K. Bauer, E. Smith, and R. Raja, "Mutation Scanning Using MUT-MAP, a High-Throughput, Microfluidic Chip-Based, Multi-Analyte Panel," Plos One, 2012, 7(12).
28. F. Moltzahn, A.B. Olshen, L. Baehner, A. Peek, L. Fong, H. Stoppler, J. Simko, J.F. Hilton, P. Carroll, and R. Blelloch, "Microfluidic-Based Multiplex qRT-PCR Identifies Diagnostic and Prognostic microRNA Signatures in the Sera of Prostate Cancer Patients," Cancer Research, 2011, 71(2), 550-560.
29. V. Thongboonkerd, N. Songtawee, and S. Sritippayawan, "Urinary proteome profiling using microfluidic technology on a chip," Journal of Proteome Research, 2007, 6(5), 2011-2018.
30. O. Fiehn, J. Kopka, P. Dormann, T. Altmann, R.N. Trethewey, and L. Willmitzer, "Metabolite profiling for plant functional genomics," Nature Biotechnology, 2000, 18(11), 1157-1161.
31. O. Fiehn, "Metabolomics - the link between genotypes and phenotypes," Plant Molecular Biology, 2002, 48(1-2), 155-171.
32. S. Choi, M. Goryll, L.Y.M. Sin, P.K. Wong, and J. Chae, "Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins," Microfluidics and Nanofluidics, 2011, 10(2), 231-247.
33. S.K. Njoroge, H.W. Chen, M.A. Witek, and S.A. Soper, "Integrated Microfluidic Systems for DNA Analysis," Microfluidics: Technologies and Applications, 2011, 304, 203-260.
34. S. Pernagallo, G. Ventimiglia, C. Cavalluzzo, E. Alessi, H. Ilyine, M. Bradley, and J.J. Diaz-Mochon, "Novel Biochip Platform for Nucleic Acid Analysis," Sensors, 2012, 12(6), 8100-8111.
35. J.F. Rusling, C.V. Kumar, J.S. Gutkind, and V. Patel, "Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer," Analyst, 2010, 135(10), 2496-2511.
36. C.C. Lin, J.H. Wang, H.W. Wu, and G.B. Lee, "Microfluidic Immunoassays," Jala, 2010, 15(3), 253-274.
37. H. Jiang, X.A. Weng, and D.Q. Li, "Microfluidic whole-blood immunoassays," Microfluidics and Nanofluidics, 2011, 10(5), 941-964.
38. J.R. Kraly, R.E. Holcomb, Q. Guan, and C.S. Henry, "Review: Microfluidic applications in metabolomics and metabolic profiling," Analytica Chimica Acta, 2009, 653(1), 23-35.
39. C.M. Chang, W.H. Chang, C.H. Wang, J.H. Wang, J.D. Mai, and G.B. Lee, "Nucleic acid amplification using microfluidic systems," Lab Chip, 2013, 13(7), 1225-1242.
40. C.H. Wang, H.C. Lai, T.M. Liou, K.F. Hsu, C.Y. Chou, and G.B. Lee, "A DNA methylation assay for detection of ovarian cancer cells using a HpaII/MspI digestion-based PCR assay in an integrated microfluidic system," Microfluidics and Nanofluidics, 2013, 15(5), 575-585.
41. B.L. Ziober, M.G. Mauk, E.M. Falls, Z. Chen, A.F. Ziober, and H.H. Bau, "Lab-on-a-chip for oral cancer screening and diagnosis," Head and Neck-Journal for the Sciences and Specialties of the Head and Neck, 2008, 30(1), 111-121.
42. N.M. Toriello, C.N. Liu, and R.A. Mathies, "Multichannel reverse transcription-polymerase chain reaction microdevice for rapid gene expression and biomarker analysis," Analytical Chemistry, 2006, 78(23), 7997-8003.
43. D. Pekin, Y. Skhiri, J.C. Baret, D. Le Corre, L. Mazutis, C. Ben Salem, F. Millot, A. El Harrak, J.B. Hutchison, J.W. Larson, D.R. Link, P. Laurent-Puig, A.D. Griffiths, and V. Taly, "Quantitative and sensitive detection of rare mutations using droplet-based microfluidics," Lab Chip, 2011, 11(13), 2156-2166.
44. V.J. Sieben, C.S.D. Marun, P.M. Pilarski, G.V. Kaigala, L.M. Pilarski, and C.J. Backhouse, "FISH and chips: chromosomal analysis on microfluidic platforms," Iet Nanobiotechnology, 2007, 1(3), 27-35.
45. X.Z. Wang, S.I. Takebayashi, E. Bernardin, D.M. Gilbert, R. Chella, and J.J. Guan, "Microfluidic extraction and stretching of chromosomal DNA from single cell nuclei for DNA fluorescence in situ hybridization," Biomedical Microdevices, 2012, 14(3), 443-451.
46. L.S. Lim, M. Hu, M.C. Huang, W.C. Cheong, A.T.L. Gan, X.L. Looi, S.M. Leong, E.S.C. Koay, and M.H. Li, "Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells," Lab Chip, 2012, 12(21), 4388-4396.
47. C.H. Tai, C.L. Ho, Y.L. Chen, W. Chen, and G.B. Lee, "A novel integrated microfluidic platform to perform fluorescence in situ hybridization for chromosomal analysis," Microfluidics and Nanofluidics, 2013, 15(6), 745-752.
48. A.E. Herr, A.V. Hatch, D.J. Throckmorton, H.M. Tran, J.S. Brennan, W.V. Giannobile, and A.K. Singh, "Microfluidic immunoassays as rapid saliva-based clinical diagnostics," Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(13), 5268-5273.
49. R. Fan, O. Vermesh, A. Srivastava, B.K.H. Yen, L.D. Qin, H. Ahmad, G.A. Kwong, C.C. Liu, J. Gould, L. Hood, and J.R. Heath, "Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood," Nature Biotechnology, 2008, 26(12), 1373-1378.
50. E. Stern, A. Vacic, N.K. Rajan, J.M. Criscione, J. Park, B.R. Ilic, D.J. Mooney, M.A. Reed, and T.M. Fahmy, "Label-free biomarker detection from whole blood," Nature Nanotechnology, 2010, 5(2), 138-142.
51. Q. Ramadan, H. Jafarpoorchekab, C.B. Huang, P. Silacci, S. Carrara, G. Koklu, J. Ghaye, J. Ramsden, C. Ruffert, G. Vergeres, and M.A.M. Gijs, "NutriChip: nutrition analysis meets microfluidics," Lab Chip, 2013, 13(2), 196-203.
52. J.M. Prot and E. Leclerc, "The Current Status of Alternatives to Animal Testing and Predictive Toxicology Methods Using Liver Microfluidic Biochips," Annals of Biomedical Engineering, 2012, 40(6), 1228-1243.
53. E.S. Boja and H. Rodriguez, "Mass spectrometry-based targeted quantitative proteomics: Achieving sensitive and reproducible detection of proteins," Proteomics, 2012, 12(8), 1093-1110.
54. J.R. Whiteaker, C.W. Lin, J. Kennedy, L.M. Hou, M. Trute, I. Sokal, P. Yan, R.M. Schoenherr, L. Zhao, U.J. Voytovich, K.S. Kelly-Spratt, A. Krasnoselsky, P.R. Gafken, J.M. Hogan, L.A. Jones, P. Wang, L. Amon, L.A. Chodosh, P.S. Nelson, M.W. McIntosh, C.J. Kemp, and A.G. Paulovich, "A targeted proteomics-based pipeline for verification of biomarkers in plasma," Nature Biotechnology, 2011, 29(7), 625-U108.
55. M. Mascini, I. Palchetti, and S. Tombelli, "Nucleic Acid and Peptide Aptamers: Fundamentals and Bioanalytical Aspects," Angewandte Chemie-International Edition, 2012, 51(6), 1316-1332.
56. C. Tuerk and L. Gold, "Systematic Evolution of Ligands by Exponential Enrichment - Rna Ligands to Bacteriophage-T4 DNA-Polymerase," Science, 1990, 249(4968), 505-510.
57. H. Ulrich, C.A. Trujillo, A.A. Nery, J.M. Alves, P. Majumder, R.R. Resende, and A.H. Martins, "DNA and RNA aptamers: From tools for basic research towards therapeutic applications," Combinatorial Chemistry & High Throughput Screening, 2006, 9(8), 619-632.
58. R. Stoltenburg, C. Reinemann, and B. Strehlitz, "SELEX-A (r)evolutionary method to generate high-affinity nucleic acid ligands," Biomolecular Engineering, 2007, 24(4), 381-403.
59. X.H. Fang and W.H. Tan, "Aptamers Generated from Cell-SELEX for Molecular Medicine: A Chemical Biology Approach," Accounts of Chemical Research, 2010, 43(1), 48-57.
60. R.K. Mosing and M.T. Bowser, "Microfluidic selection and applications of aptamers," Journal of Separation Science, 2007, 30(10), 1420-1426.
61. J.J. Tang, J.W. Xie, N.S. Shao, and Y. Yan, "The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods," Electrophoresis, 2006, 27(7), 1303-1311.
62. R.K. Mosing, S.D. Mendonsa, and M.T. Bowser, "Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase," Analytical Chemistry, 2005, 77(19), 6107-6112.
63. J.Y. Ahn, M. Jo, P. Dua, D.K. Lee, and S. Kim, "A Sol-Gel-Based Microfluidics System Enhances the Efficiency of RNA Aptamer Selection," Oligonucleotides, 2011, 21(2), 93-100.
64. X.H. Lou, J.R. Qian, Y. Xiao, L. Viel, A.E. Gerdon, E.T. Lagally, P. Atzberger, T.M. Tarasow, A.J. Heeger, and H.T. Soh, "Micromagnetic selection of aptamers in microfluidic channels," Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9), 2989-2994.
65. S.D. Mendonsa and M.T. Bowser, "In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis," Analytical Chemistry, 2004, 76(18), 5387-5392.
66. J. Tok, J. Lai, T. Leung, and S.F.Y. Li, "Selection of aptamers for signal transduction proteins by capillary electrophoresis," Electrophoresis, 2010, 31(12), 2055-2062.
67. S.D. Mendonsa and M.T. Bowser, "In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis," Journal of the American Chemical Society, 2005, 127(26), 9382-9383.
68. S.M. Park, J.Y. Ahn, M. Jo, D.K. Lee, J.T. Lis, H.G. Craighead, and S. Kim, "Selection and elution of aptamers using nanoporous sol-gel arrays with integrated microheaters," Lab Chip, 2009, 9(9), 1206-1212.
69. J.R. Qian, X.H. Lou, Y.T. Zhang, Y. Xiao, and H.T. Soh, "Generation of Highly Specific Aptamers via Micromagnetic Selection," Analytical Chemistry, 2009, 81(13), 5490-5495.
70. M. Cho, Y. Xiao, J. Nie, R. Stewart, A.T. Csordas, S.S. Oh, J.A. Thomson, and H.T. Soh, "Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing," Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(35), 15373-15378.
71. K.Y. Lien, Y.H. Chuang, L.Y. Hung, K.F. Hsu, W.W. Lai, C.L. Ho, C.Y. Chou, and G.B. Lee, "Rapid isolation and detection of cancer cells by utilizing integrated microfluidic systems," Lab Chip, 2010, 10(21), 2875-2886.
72. Y.H. Chen, H.I. Lin, C.J. Huang, S.C. Shiesh, and G.B. Lee, "An automatic microfluidic system that continuously performs the systematic evolution of ligands by exponential enrichment," Microfluidics and Nanofluidics, 2012, 13(6), 929-939.
73. C.J. Huang, H.I. Lin, S.C. Shiesh, and G.B. Lee, "An integrated microfluidic system for rapid screening of alpha-fetoprotein-specific aptamers," Biosensors & Bioelectronics, 2012, 35(1), 50-55.
74. K. Sefah, D. Shangguan, X.L. Xiong, M.B. O'Donoghue, and W.H. Tan, "Development of DNA aptamers using Cell-SELEX," Nature Protocols, 2010, 5(6), 1169-1185.
75. M.V. Berezovski, M. Lechmann, M.U. Musheev, T.W. Mak, and S.N. Krylov, "Aptamer-facilitated biomarker discovery (AptaBiD)," Journal of the American Chemical Society, 2008, 130(28), 9137-9143.
76. C.H. Weng, I.S. Hsieh, L.Y. Hung, H.I. Lin, S.C. Shiesh, Y.L. Chen, and G.B. Lee, "An automatic microfluidic system for rapid screening of cancer stem-like cell-specific aptamers," Microfluidics and Nanofluidics, 2013, 14(3-4), 753-765.
77. E.L. Corbett, C.J. Watt, N. Walker, D. Maher, B.G. Williams, M.C. Raviglione, and C. Dye, "The growing burden of tuberculosis - Global trends and interactions with the HIV epidemic," Archives of Internal Medicine, 2003, 163(9), 1009-1021.
78. Y. Guan, B.J. Zheng, Y.Q. He, X.L. Liu, Z.X. Zhuang, C.L. Cheung, S.W. Luo, P.H. Li, L.J. Zhang, Y.J. Guan, K.M. Butt, K.L. Wong, K.W. Chan, W. Lim, K.F. Shortridge, K.Y. Yuen, J.S.M. Peiris, and L.L.M. Poon, "Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China," Science, 2003, 302(5643), 276-278.
79. A.M. Hutson, R.L. Atmar, and M.K. Estes, "Norovirus disease: changing epidemiology and host susceptibility factors," Trends in Microbiology, 2004, 12(6), 279-287.
80. N.P.A.S. Johnson and J. Mueller, "Updating the accounts: global mortality of the 1918-1920 "Spanish" influenza pandemic," Bulletin of the History of Medicine, 2002, 76(1), 105-115.
81. Y. Kawaoka, S. Krauss, and R.G. Webster, "Avian-to-Human Transmission of the Pb1 Gene of Influenza-a Viruses in the 1957 and 1968 Pandemics," Journal of Virology, 1989, 63(11), 4603-4608.
82. G.W. Both, M.J. Sleigh, N.J. Cox, and A.P. Kendal, "Antigenic Drift in Influenza Virus-H3 Hemagglutinin from 1968 to 1980 - Multiple Evolutionary Pathways and Sequential Amino-Acid Changes at Key Antigenic Sites," Journal of Virology, 1983, 48(1), 52-60.
83. T. Horimoto and Y. Kawaoka, "Influenza: Lessons from past pandemics, warnings from current incidents," Nature Reviews Microbiology, 2005, 3(8), 591-600.
84. G. Chowell, S.M. Bertozzi, M.A. Colchero, H. Lopez-Gatell, C. Alpuche-Aranda, M. Hernandez, and M.A. Miller, "Severe Respiratory Disease Concurrent with the Circulation of H1N1 Influenza," New England Journal of Medicine, 2009, 361(7), 674-679.
85. R.A. Medina and A. Garcia-Sastre, "Influenza A viruses: new research developments," Nature Reviews Microbiology, 2011, 9(8), 590-603.
86. R. Siegel, J.M. Ma, Z.H. Zou, and A. Jemal, "Cancer Statistics, 2014," Ca-a Cancer Journal for Clinicians, 2014, 64(1), 9-29.
87. C.S. Marcus, G.L. Maxwell, K.M. Darcy, C.A. Hamilton, and W.P. McGuire, "Current Approaches and Challenges in Managing and Monitoring Treatment Response in Ovarian Cancer," Journal of Cancer, 2014, 5(1), 25-30.
88. L.A.G. Ries, M.E. Reichman, D.R. Lewis, B.F. Hankey, and B.K. Edwards, "Cancer survival and incidence from the surveillance, epidemiology, and end results (SEER) program," Oncologist, 2003, 8(6), 541-552.
89. R. van de Laar, J. IntHout, T. Van Gorp, S. Verdonschot, A.M. van Altena, C.G. Gerestein, L.F.A.G. Massuger, P.L.M. Zusterzeel, and R.F.P.M. Kruitwagen, "External validation of three prognostic models for overall survival in patients with advanced-stage epithelial ovarian cancer," British Journal of Cancer, 2014, 110(1), 42-48.
90. V. Muller and K. Pantel, "Bone marrow micrometastases and circulating tumor cells: current aspects and future perspectives," Breast Cancer Research, 2004, 6(6), 258-261.
91. M. Cristofanilli, D.F. Hayes, G.T. Budd, M.J. Ellis, A. Stopeck, J.M. Reuben, G.V. Doyle, J. Matera, W.J. Allard, M.C. Miller, H.A. Fritsche, G.N. Hortobagyi, and L. Terstappen, "Circulating tumor cells: A novel prognostic factor for newly diagnosed metastatic breast cancer," Journal of Clinical Oncology, 2005, 23(7), 1420-1430.
92. M. Cristofanilli, G.T. Budd, M.J. Ellis, A. Stopeck, J. Matera, M.C. Miller, J.M. Reuben, G.V. Doyle, W.J. Allard, L. Terstappen, and D.F. Hayes, "Circulating tumor cells, disease progression, and survival in metastatic breast cancer," New England Journal of Medicine, 2004, 351(8), 781-791.
93. A.A. Adams, P.I. Okagbare, J. Feng, M.L. Hupert, D. Patterson, J. Gottert, R.L. McCarley, D. Nikitopoulos, M.C. Murphy, and S.A. Soper, "Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor," Journal of the American Chemical Society, 2008, 130(27), 8633-8641.
94. S.L. Stott, C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, B.A. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Floyd, A.J. Gilman, J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaran, D.A. Haber, and M. Toner, "Isolation of circulating tumor cells using a microvortex-generating herringbone-chip," Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(43), 18392-18397.
95. S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, and M. Toner, "Isolation of rare circulating tumour cells in cancer patients by microchip technology," Nature, 2007, 450(7173), 1235-1239.
96. C. Jin, S.M. McFaul, S.P. Duffy, X.Y. Deng, P. Tavassoli, P.C. Black, and H.S. Ma, "Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments," Lab Chip, 2014, 14(1), 32-44.
97. E. Sollier, D.E. Go, J. Che, D.R. Gossett, S. O'Byrne, W.M. Weaver, N. Kummer, M. Rettig, J. Goldman, N. Nickols, S. McCloskey, R.P. Kulkarni, and D. Di Carlo, "Size-selective collection of circulating tumor cells using Vortex technology," Lab Chip, 2014, 14(1), 63-77.
98. M.E. Warkiani, G.F. Guan, K.B. Luan, W.C. Lee, A.A.S. Bhagat, P.K. Chaudhuri, D.S.W. Tan, W.T. Lim, S.C. Lee, P.C.Y. Chen, C.T. Lim, and J. Han, "Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells," Lab Chip, 2014, 14(1), 128-137.
99. S.B. Huang, M.H. Wu, Y.H. Lin, C.H. Hsieh, C.L. Yang, H.C. Lin, C.P. Tseng, and G.B. Lee, "High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force," Lab on a Chip, 2013, 13(7), 1371-1383.
100. R.J. Cho, M.J. Campbell, E.A. Winzeler, L. Steinmetz, A. Conway, L. Wodicka, T.G. Wolfsberg, A.E. Gabrielian, D. Landsman, D.J. Lockhart, and R.W. Davis, "A genome-wide transcriptional analysis of the mitotic cell cycle," Molecular Cell, 1998, 2(1), 65-73.
101. D.C. Fingar, S. Salama, C. Tsou, E. Harlow, and J. Blenis, "Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E," Genes & Development, 2002, 16(12), 1472-1487.
102. M. Bjorklund, M. Taipale, M. Varjosalo, J. Saharinen, J. Lahdenpera, and J. Taipale, "Identification of pathways regulating cell size and cell-cycle progression by RNAi," Nature, 2006, 439(7079), 1009-1013.
103. R. Molina, X. Filella, and J.M. Auge, "ProGRP: a new biomarker for small cell lung cancer," Clinical Biochemistry, 2004, 37(7), 505-511.
104. B.D. Cohen, D.A. Baker, C. Soderstrom, G. Tkalcevic, A.M. Rossi, P.E. Miller, M.W. Tengowski, F. Wang, A. Gualberto, J.S. Beebe, and J.D. Moyer, "Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871," Clinical Cancer Research, 2005, 11(5), 2063-2073.
105. J.S. de Bono, G. Attard, A. Adjei, M.N. Pollak, P.C. Fong, P. Haluska, L. Roberts, C. Melvin, M. Repollet, D. Chianese, M. Connely, L. Terstappen, and A. Gualberto, "Potential applications for circulating tumor cells expressing the insulin-like growth factor-I receptor," Clinical Cancer Research, 2007, 13(12), 3611-3616.
106. A.G. Georgas and M.E. Brandt, "Novel method for analyzing spectroscopic ligand binding data," Abstracts of Papers of the American Chemical Society, 2007, 233, 777-777.
107. C.H. Weng, C.J. Huang, and G.B. Lee, "Screening of Aptamers on Microfluidic Systems for Clinical Applications," Sensors, 2012, 12(7), 9514-9529.
108. M.G. Mauk, B.L. Ziober, Z.Y. Chen, J.A. Thompson, and H.H. Bau, "Lab-on-a-chip technologies for oral-based cancer screening and diagnostics - Capabilities, issues, and prospects," Oral-Based Diagnostics, 2007, 1098, 467-475.
109. L.Y. Hung, Y.H. Chuang, H.T. Kuo, C.H. Wang, K.F. Hsu, C.Y. Chou, and G.B. Lee, "An integrated microfluidic platform for rapid tumor cell isolation, counting and molecular diagnosis," Biomedical Microdevices, 2013, 15(2), 339-352.
110. R. Siegel, C. DeSantis, and A. Jemal, "Colorectal cancer statistics, 2014," Ca-a Cancer Journal for Clinicians, 2014, 64(2), 104-117.
111. B. Levin, D.A. Lieberman, B. McFarland, K.S. Andrews, D. Brooks, J. Bond, C. Dash, F.M. Giardiello, S. Glick, D. Johnson, C.D. Johnson, T.R. Levin, P.J. Pickhardt, D.K. Rex, R.A. Smith, A. Thorson, S.J. Winawer, A.C.S.C.C. Ad, and A.C.R.C. Canc, "Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: A joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology," Gastroenterology, 2008, 134(5), 1570-1595.
112. E. Quintero, A. Castells, L. Bujanda, J. Cubiella, D. Salas, A. Lanas, M. Andreu, F. Carballo, J.D. Morillas, C. Hernandez, R. Jover, I. Montalvo, J. Arenas, E. Laredo, V. Hernandez, F. Iglesias, E. Cid, R. Zubizarreta, T. Sala, M. Ponce, M. Andres, G. Teruel, A. Peris, M.P. Roncales, M. Polo-Tomas, X. Bessa, O. Ferrer-Armengou, J. Grau, A. Serradesanferm, A. Ono, J. Cruzado, F. Perez-Riquelme, I. Alonso-Abreu, M. de la Vega-Prieto, J.M. Reyes-Melian, G. Cacho, J. Diaz-Tasende, A. Herreros-de-Tejada, C. Poves, C. Santander, and A. Gonzalez-Navarro, "Colonoscopy versus fecal immunochemical testing in colorectal-cancer screening," N Engl J Med, 2012, 366(8), 697-706.
113. J.E. Allison, I.S. Tekawa, L.J. Ransom, and A.L. Adrain, "A comparison of fecal occult-blood tests for colorectal-cancer screening," N Engl J Med, 1996, 334(3), 155-159.
114. N.M. Forones and M. Tanaka, "CEA and CA 19-9 as prognostic indexes in colorectal cancer," Hepato-Gastroenterology, 1999, 46(26), 905-908.
115. J.M. Al-Shuneigat, S.S. Mahgoub, and F. Huq, "Colorectal carcinoma: nucleosomes, carcinoembryonic antigen and ca 19-9 as apoptotic markers; a comparative study," Journal of Biomedical Science, 2011, 18.
116. E. Van Cutsem, C.H. Kohne, E. Hitre, J. Zaluski, C.R.C. Chien, A. Makhson, G. D'Haens, T. Pinter, R. Lim, G. Bodoky, J.K. Roh, G. Folprecht, P. Ruff, C. Stroh, S. Tejpar, M. Schlichting, J. Nippgen, and P. Rougier, "Cetuximab and Chemotherapy as Initial Treatment for Metastatic Colorectal Cancer," New England Journal of Medicine, 2009, 360(14), 1408-1417.
117. C.J. Eaves, "CANCER STEM CELLS Here, there, everywhere?," Nature, 2008, 456(7222), 581-582.
118. D. Bonnet and J.E. Dick, "Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell," Nat Med, 1997, 3(7), 730-737.
119. L. Ricci-Vitiani, D.G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, and R. De Maria, "Identification and expansion of human colon-cancer-initiating cells," Nature, 2007, 445(7123), 111-115.
120. L.V. Nguyen, R. Vanner, P. Dirks, and C.J. Eaves, "Cancer stem cells: an evolving concept," Nature Reviews Cancer, 2012, 12(2), 133-143.
121. M. Al-Hajj, M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, and M.F. Clarke, "Prospective identification of tumorigenic breast cancer cells," Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(7), 3983-3988.
122. N. Barker, J.H. van Es, J. Kuipers, P. Kujala, M. van den Born, M. Cozijnsen, A. Haegebarth, J. Korving, H. Begthel, P.J. Peters, and H. Clevers, "Identification of stem cells in small intestine and colon by marker gene Lgr5," Nature, 2007, 449(7165), 1003-U1001.
123. T. Brabletz, A. Jung, S. Spaderna, F. Hlubek, and T. Kirchner, "Opinion - Migrating cancer stem cells - an integrated concept of malignant tumour progression," Nature Reviews Cancer, 2005, 5(9), 744-749.
124. P. Dalerba, S.J. Dylla, I.K. Park, R. Liu, X.H. Wang, R.W. Cho, T. Hoey, A. Gurney, E.H. Huang, D.M. Simeone, A.A. Shelton, G. Parmiani, C. Castelli, and M.F. Clarke, "Phenotypic characterization of human colorectal cancer stem cells," Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(24), 10158-10163.
125. A.G. Vaiopoulos, I.D. Kostakis, M. Koutsilieris, and A.G. Papavassiliou, "Colorectal Cancer Stem Cells," Stem Cells, 2012, 30(3), 363-371.
126. T.M. Yeung, S.C. Gandhi, J.L. Wilding, R. Muschel, and W.F. Bodmer, "Cancer stem cells from colorectal cancer-derived cell lines," Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8), 3722-3727.
127. N. Haraguchi, M. Ohkuma, H. Sakashita, S. Matsuzaki, F. Tanaka, K. Mimori, Y. Kamohara, H. Inoue, and M. Mori, "CD133(+)CD44(+) population efficiently enriches colon cancer initiating cells," Annals of Surgical Oncology, 2008, 15(10), 2927-2933.
128. H. Ishii, K. Ieta, F. Tanaka, N. Haraguchi, Y. Kita, H. Sakashita, K. Mimori, T. Matsumoto, H. Inoue, H. Kuwano, and M. Mori, "Characteristics of Colon Cancer-Initiating Cells," Tumor Biology, 2008, 29, 68-68.
129. C.T. Jordan, M.L. Guzman, and M. Noble, "Cancer Stem Cells," New England Journal of Medicine, 2006, 355(12), 1253-1261.
130. L.E. Ailles and I.L. Weissman, "Cancer stem cells in solid tumors," Current Opinion in Biotechnology, 2007, 18(5), 460-466.
131. J.A. Magee, E. Piskounova, and S.J. Morrison, "Cancer Stem Cells: Impact, Heterogeneity, and Uncertainty," Cancer Cell, 2012, 21(3), 283-296.
132. L. Kaiser, M.S. Briones, and F.G. Hayden, "Performance of virus isolation and Directigen (R) Flu A to detect influenza A virus in experimental human infection," Journal of Clinical Virology, 1999, 14(3), 191-197.
133. P.C.Y. Woo, S.S. Chiu, W.H. Seto, and M. Peiris, "Cost-effectiveness of rapid diagnosis of viral respiratory tract infections in pediatric patients," Journal of Clinical Microbiology, 1997, 35(6), 1579-1581.
134. N.J. Cox and K. Subbarao, "Influenza," Lancet, 1999, 354(9186), 1277-1282.
135. J.A. Espmark and C.R. Salenstedt, "Hemagglutination-inhibition test for titration of antibodies against hepatitis contagiosa canis (infectious canine hepatitis)," Arch Gesamte Virusforsch, 1961, 11, 64-72.
136. R.L. Atmar, B.D. Baxter, E.A. Dominguez, and L.H. Taber, "Comparison of reverse transcription-PCR with tissue culture and other rapid diagnostic assays for detection of type A influenza virus," Journal of Clinical Microbiology, 1996, 34(10), 2604-2606.
137. C.J. Liu, K.Y. Lien, C.Y. Weng, J.W. Shin, T.Y. Chang, and G.B. Lee, "Magnetic-bead-based microfluidic system for ribonucleic acid extraction and reverse transcription processes," Biomedical Microdevices, 2009, 11(2), 339-350.
138. A.J. McGeer, "Diagnostic testing or empirical therapy for patients hospitalized with suspected influenza: what to do?," Clin Infect Dis, 2009, 48 Suppl 1, S14-19.
139. H.J. Zheng, Z.H. Tao, W.F. Cheng, and W.F. Piessens, "Comparison of Dot-ELISA with Sandwich-ELISA for the detection of circulating antigens in patients with bancroftian filariasis," Am J Trop Med Hyg, 1990, 42(6), 546-549.
140. D. Erickson and D.Q. Li, "Influence of surface heterogeneity on electrokinetically driven microfluidic mixing," Langmuir, 2002, 18(5), 1883-1892.
141. C.H. Weng, T.B. Huang, C.C. Huang, C.S. Yeh, H.Y. Lei, and G.B. Lee, "A suction-type microfluidic immunosensing chip for rapid detection of the dengue virus," Biomedical Microdevices, 2011, 13(3), 585-595.
142. D.A.A. Vignali, "Multiplexed particle-based flow cytometric assays," Journal of Immunological Methods, 2000, 243(1-2), 243-255.
143. M. Fuentes, C. Mateo, A. Rodriguez, M. Casqueiro, J.C. Tercero, H.H. Riese, R. Fernandez-Lafuente, and J.M. Guisan, "Detecting minimal traces of DNA using DNA covalently attached to superparamagnetic nanoparticles and direct PCR-ELISA," Biosensors & Bioelectronics, 2006, 21(8), 1574-1580.
144. S.Y. Yang, K.Y. Lien, K.J. Huang, H.Y. Lei, and G.B. Lee, "Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection," Biosensors & Bioelectronics, 2008, 24(4), 855-862.
145. A.C. Hurt, R. Alexander, J. Hibbert, N. Deed, and I.G. Barr, "Performance of six influenza rapid tests in detecting human influenza in clinical specimens," Journal of Clinical Virology, 2007, 39(2), 132-135.
146. S.E. Dale, C. Mayer, M.C. Mayer, and M.A. Menegus, "Analytical and Clinical Sensitivity of the 3M Rapid Detection Influenza A+B Assay," Journal of Clinical Microbiology, 2008, 46(11), 3804-3807.
147. J.F. Drexler, A. Helmer, H. Kirberg, U. Reber, M. Panning, M. Muller, K. Hofling, B. Matz, C. Drosten, and A.M. Eis-Hubinger, "Poor Clinical Sensitivity of Rapid Antigen Test for Influenza A Pandemic (H1N1) 2009 Virus," Emerging Infectious Diseases, 2009, 15(10), 1662-1664.
148. D.J. Faix, S.S. Sherman, and S.H. Waterman, "Rapid-Test Sensitivity for Novel Swine-Origin Influenza A (H1N1) Virus in Humans," New England Journal of Medicine, 2009, 361(7), 728-729.
149. C.C. Ginocchio, F. Zhang, R. Manji, S. Arora, M. Bornfreund, L. Falk, M. Lotlikar, M. Kowerska, G. Becker, D. Korologos, M. de Geronimo, and J.M. Crawford, "Evaluation of multiple test methods for the detection of the novel 2009 influenza A (H1N1) during the New York City outbreak," Journal of Clinical Virology, 2009, 45(3), 191-195.
150. S. Vasoo, J. Stevens, and K. Singh, "Rapid Antigen Tests for Diagnosis of Pandemic (Swine) Influenza A/H1N1," Clinical Infectious Diseases, 2009, 49(7), 1090-1093.
151. K.C. Tsao, Y.B. Kuo, C.G. Huang, S.W. Chau, and E.C. Chan, "Performance of rapid-test kits for the detection of the pandemic influenza A/H1N1 virus," Journal of Virological Methods, 2011, 173(2), 387-389.
152. G. Sala, P. Cordioli, A. Moreno-Martin, M. Tollis, E. Brocchi, A. Piccirillo, and A. Lavazza, "ELISA test for the detection of influenza H7 antibodies in avian sera," Avian Diseases, 2003, 47, 1057-1059.
153. T. Shibata, T. Tanaka, K. Shimizu, S. Hayakawa, and K. Kuroda, "Immunofluorescence imaging of the influenza virus M1 protein is dependent on the fixation method," Journal of Virological Methods, 2009, 156(1-2), 162-165.
154. G. Boivin, S. Cote, P. Dery, G. De Serres, and M.G. Bergeron, "Multiplex real-time PCR assay for detection of influenza and human respiratory syncytial viruses," Journal of Clinical Microbiology, 2004, 42(1), 45-51.
155. A. Gupta, D. Akin, and R. Bashir, "Single virus particle mass detection using microresonators with nanoscale thickness," Applied Physics Letters, 2004, 84(11), 1976-1978.
156. B. Ilic, Y. Yang, and H.G. Craighead, "Virus detection using nanoelectromechanical devices," Applied Physics Letters, 2004, 85(13), 2604-2606.
157. M. Zborowski, L.P. Sun, L.R. Moore, P.S. Williams, and J.J. Chalmers, "Continuous cell separation using novel magnetic quadrupole flow sorter," Journal of Magnetism and Magnetic Materials, 1999, 194(1-3), 224-230.
158. A.K. Gupta, P.R. Nair, D. Akin, M.R. Ladisch, S. Broyles, M.A. Alam, and R. Bashir, "Anomalous resonance in a nanomechanical biosensor," Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(36), 13362-13367.
159. K.Y. Lien, W.C. Lee, H.Y. Lei, and G.B. Lee, "Integrated reverse transcription polymerase chain reaction systems for virus detection," Biosensors & Bioelectronics, 2007, 22(8), 1739-1748.
160. K.Y. Lien, L.Y. Hung, T.B. Huang, Y.C. Tsai, H.Y. Lei, and G.B. Lee, "Rapid detection of influenza A virus infection utilizing an immunomagnetic bead-based microfluidic system," Biosensors & Bioelectronics, 2011, 26(9), 3900-3907.
161. L.Y. Hung, T.B. Huang, Y.C. Tsai, C.S. Yeh, H.Y. Lei, and G.B. Lee, "A microfluidic immunomagnetic bead-based system for the rapid detection of influenza infections: from purified virus particles to clinical specimens," Biomedical Microdevices, 2013, 15(3), 539-551.
162. F. Patolsky, G.F. Zheng, O. Hayden, M. Lakadamyali, X.W. Zhuang, and C.M. Lieber, "Electrical detection of single viruses," Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(39), 14017-14022.
163. G.P. Tegos, T.N. Demidova, D. Arcila-Lopez, H. Lee, T. Wharton, H. Gali, and M.R. Hamblin, "Cationic fullerenes are effective and selective antimicrobial photosensitizers," Chemistry & Biology, 2005, 12(10), 1127-1135.
164. A.H. Lu, E.L. Salabas, and F. Schuth, "Magnetic nanoparticles: Synthesis, protection, functionalization, and application," Angewandte Chemie-International Edition, 2007, 46(8), 1222-1244.
165. W.Q. Lai, D.P. Tang, X.H. Que, J.Y. Zhuang, L.B. Fu, and G.N. Chen, "Enzyme-catalyzed silver deposition on irregular-shaped gold nanoparticles for electrochemical immunoassay of alpha-fetoprotein," Analytica Chimica Acta, 2012, 755, 62-68.
166. J. Lum, R.H. Wang, K. Lassiter, B. Srinivasan, D. Abi-Ghanem, L. Berghman, B. Hargis, S. Tung, H.G. Lu, and Y.B. Li, "Rapid detection of avian influenza H5N1 virus using impedance measurement of immuno-reaction coupled with RBC amplification," Biosensors & Bioelectronics, 2012, 38(1), 67-73.
167. T.F. Massoud and S.S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes & Development, 2003, 17(5), 545-580.
168. R. Weissleder, "Molecular imaging in cancer," Science, 2006, 312(5777), 1168-1171.
169. J.H. Lee, Y.M. Huh, Y. Jun, J. Seo, J. Jang, H.T. Song, S. Kim, E.J. Cho, H.G. Yoon, J.S. Suh, and J. Cheon, "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat Med, 2007, 13(1), 95-99.
170. K.S. Kim and J.K. Park, "Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel," Lab Chip, 2005, 5(6), 657-664.
171. F.Y.H. Lin, M. Sabri, J. Alirezaie, D.Q. Li, and P.M. Sherman, "Development of a nanoparticle-labeled microfluidic immunoassay for detection of pathogenic microorganisms," Clinical and Diagnostic Laboratory Immunology, 2005, 12(3), 418-425.
172. G.D. Chen, C.J. Alberts, W. Rodriguez, and M. Toner, "Concentration and Purification of Human Immunodeficiency Virus Type 1 Virions by Microfluidic Separation of Superparamagnetic Nanoparticles," Analytical Chemistry, 2010, 82(2), 723-728.
173. B. Teste, F. Malloggi, J.M. Siaugue, A. Varenne, F. Kanoufi, and S. Descroix, "Microchip integrating magnetic nanoparticles for allergy diagnosis," Lab Chip, 2011, 11(24), 4207-4213.
174. L.N. Shao, Z.M. Ren, G.S. Zhang, and L.L. Chen, "Facile synthesis, characterization of a MnFe2O4/activated carbon magnetic composite and its effectiveness in tetracycline removal," Materials Chemistry and Physics, 2012, 135(1), 16-24.
175. J.R. Kanwar, K. Roy, and R.K. Kanwar, "Chimeric aptamers in cancer cell-targeted drug delivery," Crit Rev Biochem Mol Biol, 2011, 46(6), 459-477.
176. D. Van Simaeys, D. Lopez-Colon, K. Sefah, R. Sutphen, E. Jimenez, and W.H. Tan, "Study of the Molecular Recognition of Aptamers Selected through Ovarian Cancer Cell-SELEX," Plos One, 2010, 5(11).
177. M.T. Bowser, S.D. Mendonsa, and R. Mosing, "CE-selex: In vitro selection of DNA APTAMERS using capillary electrophoresis.," Abstracts of Papers of the American Chemical Society, 2005, 229, U139-U139.
178. K.T. Kotz, W. Xiao, C. Miller-Graziano, W.J. Qian, A. Russom, E.A. Warner, L.L. Moldawer, A. De, P.E. Bankey, B.O. Petritis, D.G. Camp, A.E. Rosenbach, J. Goverman, S.P. Fagan, B.H. Brownstein, D. Irimia, W.H. Xu, J. Wilhelmy, M.N. Mindrinos, R.D. Smith, R.W. Davis, R.G. Tompkins, M. Toner, and I.H.R. Injury, "Clinical microfluidics for neutrophil genomics and proteomics," Nat Med, 2010, 16(9), 1042-U1142.
179. A. Paul, M. Avci-Adali, G. Ziemer, and H.P. Wendel, "Streptavidin-coated magnetic beads for DNA strand separation implicate a multitude of problems during cell-SELEX," Oligonucleotides, 2009, 19(3), 243-254.
180. T. Kaku, S. Ogawa, Y. Kawano, Y. Ohishi, H. Kobayashi, T. Hirakawa, and H. Nakano, "Histological classification of ovarian cancer," Med Electron Microsc, 2003, 36(1), 9-17.
181. H.A. Risch, L.D. Marrett, M. Jain, and G.R. Howe, "Differences in risk factors for epithelial ovarian cancer by histologic type - Results of a case-control study," American Journal of Epidemiology, 1996, 144(4), 363-372.
182. A.W. Kurian, R.R. Balise, V. McGuire, and A.S. Whittemore, "Histologic types of epithelial ovarian cancer: have they different risk factors?," Gynecol Oncol, 2005, 96(2), 520-530.
183. S. Nishimura, H. Tsuda, K. Ito, T. Jobo, N. Yaegashi, T. Inoue, T. Sudo, R.S. Berkowitz, and S.C. Mok, "Differential expression of ABCF2 protein among different histologic types of epithelial ovarian cancer and in clear cell adenocarcinomas of different organs," Hum Pathol, 2007, 38(1), 134-139.
184. T. Fekete, E. Raso, I. Pete, B. Tegze, I. Liko, G. Munkacsy, N. Sipos, J. Rigo, Jr., and B. Gyorffy, "Meta-analysis of gene expression profiles associated with histological classification and survival in 829 ovarian cancer samples," Int J Cancer, 2012, 131(1), 95-105.
185. E. Erba, D. Bergamaschi, L. Bassano, S. Ronzoni, G. Di Liberti, I. Muradore, S. Vignati, G. Faircloth, J. Jimeno, and M. D'Incalci, "Isolation and characterization of an IGROV-1 human ovarian cancer cell line made resistant to Ecteinascidin-743 (ET-743)," British Journal of Cancer, 2000, 82(10), 1732-1739.
186. N. Eckstein, "Platinum resistance in breast and ovarian cancer cell lines," Journal of Experimental & Clinical Cancer Research, 2011, 30.
187. K. Sefah, L. Meng, D. Lopez-Colon, E. Jimenez, C. Liu, and W.H. Tan, "DNA Aptamers as Molecular Probes for Colorectal Cancer Study," Plos One, 2010, 5(12).
188. J. Hardy and D.J. Selkoe, "Medicine - The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics," Science, 2002, 297(5580), 353-356.
189. S. Ray, M. Britschgi, C. Herbert, Y. Takeda-Uchimura, A. Boxer, K. Blennow, L.F. Friedman, D.R. Galasko, M. Jutel, A. Karydas, J.A. Kaye, J. Leszek, B.L. Miller, L. Minthon, J.F. Quinn, G.D. Rabinovici, W.H. Robinson, M.N. Sabbagh, Y.T. So, D.L. Sparks, M. Tabaton, J. Tinklenberg, J.A. Yesavage, R. Tibshirani, and T. Wyss-Coray, "Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins," Nature Medicine, 2007, 13(11), 1359-1362.
190. S.C. Waring and R.N. Rosenberg, "Genome-wide association studies in Alzheimer disease," Archives of Neurology, 2008, 65(3), 329-334.
191. A. Samii, J.G. Nutt, and B.R. Ransom, "Parkinson's disease," Lancet, 2004, 363(9423), 1783-1793.
192. W.M. Caudle, T.K. Bammler, Y. Lin, S. Pan, and J. Zhang, "Using 'omics' to define pathogenesis and biomarkers of Parkinson's disease," Expert Review of Neurotherapeutics, 2010, 10(6), 925-942.
193. J.A. Todd, J.I. Bell, and H.O. McDevitt, "HLA-DQ-BETA GENE CONTRIBUTES TO SUSCEPTIBILITY AND RESISTANCE TO INSULIN-DEPENDENT DIABETES-MELLITUS," Nature, 1987, 329(6140), 599-604.
194. P. Vafiadis, H. Ounissi-Benkalha, M. Palumbo, R. Grabs, M. Rousseau, C.G. Goodyer, and C. Polychronakos, "Class III alleles of the variable number of tandem repeat insulin polymorphism associated with silencing of thymic insulin predispose to type 1 diabetes," Journal of Clinical Endocrinology & Metabolism, 2001, 86(8), 3705-3710.
195. I. Barroso, J. Luan, R.P.S. Middelberg, A.H. Harding, P.W. Franks, R.W. Jakes, D. Clayton, A.J. Schafer, S. O'Rahilly, and N.J. Wareham, "Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action," Plos Biology, 2003, 1(1), 41-55.
196. A.L. Gloyn, M.N. Weedon, K.R. Owen, M.J. Turner, B.A. Knight, G. Hitman, M. Walker, J.C. Levy, M. Sampson, S. Halford, M.I. McCarthy, A.T. Hattersley, and T.M. Frayling, "Large-scale association studies of variants in genes encoding the pancreatic beta-cell K-ATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes," Diabetes, 2003, 52(2), 568-572.
197. R.J.F. Loos and C. Bouchard, "FTO: the first gene contributing to common forms of human obesity," Obesity Reviews, 2008, 9(3), 246-250.
198. T.R. Merriman and N. Dalbeth, "The genetic basis of hyperuricaemia and gout," Joint Bone Spine, 2011, 78(1), 35-40.
199. A.M. Reginato, D.B. Mount, I. Yang, and H.K. Choi, "The genetics of hyperuricaemia and gout," Nature Reviews Rheumatology, 2012, 8(10), 610-621.
200. N. Srikumar, N.J. Brown, P.N. Hopkins, X. Jeunemaitre, S.C. Hunt, D.E. Vaughan, and G.H. Williams, "PAI-1 in human hypertension: Relation to hypertensive groups," American Journal of Hypertension, 2002, 15(8), 683-690.
201. A.V. Chobanian, G.L. Bakris, H.R. Black, W.C. Cushman, L.A. Green, J.L. Izzo, D.W. Jones, B.J. Materson, S. Oparil, J.T. Wright, E.J. Roccella, and P. Natl High Blood Pressure Educ, "Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure," Hypertension, 2003, 42(6), 1206-1252.
202. C. Savoia and E.L. Schiffrin, "Reduction of C-reactive protein and the use of anti-hypertensives," Vasc Health Risk Manag, 2007, 3(6), 975-983.
203. T.J. Wang, P. Gona, M.G. Larson, G.H. Tofler, D. Levy, C. Newton-Cheh, P.F. Jacques, N. Rifai, J. Selhub, S.J. Robins, E.J. Benjamin, R.B. D'Agostino, and R.S. Vasan, "Multiple biomarkers for the prediction of first major cardiovascular events and death," New England Journal of Medicine, 2006, 355(25), 2631-2639.
204. F. Cambien and L. Tiret, "Genetics of cardiovascular diseases - From single mutations to the whole genome," Circulation, 2007, 116(15), 1714-1724.
205. M.-I. Mohammed and M.P.Y. Desmulliez, "Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review," Lab on a Chip, 2011, 11(4), 569-595.
206. L. Gortzak-Uzan, A. Ignatchenko, A.I. Evangelou, M. Agochiya, K.A. Brown, P.S. Onge, I. Kireeva, G. Schmitt-Ulms, T.J. Brown, J. Murphy, B. Rosen, P. Shaw, I. Jurisica, and T. Kislinger, "A proteome resource of ovarian cancer ascites: Integrated proteomic and bioinformatic analyses to identify putative biomarkers," Journal of Proteome Research, 2008, 7(1), 339-351.
207. D. Bell, A. Berchuck, M. Birrer, J. Chien, D.W. Cramer, F. Dao, R. Dhir, P. DiSaia, H. Gabra, P. Glenn, A.K. Godwin, J. Gross, L. Hartmann, M. Huang, D.G. Huntsman, M. Iacocca, M. Imielinski, S. Kalloger, B.Y. Karlan, D.A. Levine, G.B. Mills, C. Morrison, D. Mutch, N. Olvera, S. Orsulic, K. Park, N. Petrelli, B. Rabeno, J.S. Rader, B.I. Sikic, K. Smith-McCune, A.K. Sood, D. Bowtell, R. Penny, J.R. Testa, K. Chang, H.H. Dinh, J.A. Drummond, G. Fowler, P. Gunaratne, A.C. Hawes, C.L. Kovar, L.R. Lewis, M.B. Morgan, I.F. Newsham, J. Santibanez, J.G. Reid, L.R. Trevino, Y.Q. Wu, M. Wang, D.M. Muzny, D.A. Wheeler, R.A. Gibbs, G. Getz, M.S. Lawrence, K. Cibulskis, A.Y. Sivachenko, C. Sougnez, D. Voet, J. Wilkinson, T. Bloom, K. Ardlie, T. Fennell, J. Baldwin, S. Gabriel, E.S. Lander, L. Ding, R.S. Fulton, D.C. Koboldt, M.D. McLellan, T. Wylie, J. Walker, M. O'Laughlin, D.J. Dooling, L. Fulton, R. Abbott, N.D. Dees, Q. Zhang, C. Kandoth, M. Wendl, W. Schierding, D. Shen, C.C. Harris, H. Schmidt, J. Kalicki, K.D. Delehaunty, C.C. Fronick, R. Demeter, L. Cook, J.W. Wallis, L. Lin, V.J. Magrini, J.S. Hodges, J.M. Eldred, S.M. Smith, C.S. Pohl, F. Vandin, B.J. Raphael, G.M. Weinstock, R. Mardis, R.K. Wilson, M. Meyerson, W. Winckler, R.G.W. Verhaak, S.L. Carter, C.H. Mermel, G. Saksena, H. Nguyen, R.C. Onofrio, D. Hubbard, S. Gupta, A. Crenshaw, A.H. Ramos, L. Chin, A. Protopopov, J. Zhang, T.M. Kim, I. Perna, Y. Xiao, H. Zhang, G. Ren, N. Sathiamoorthy, R.W. Park, E. Lee, P.J. Park, R. Kucherlapati, D.M. Absher, L. Waite, G. Sherlock, J.D. Brooks, J.Z. Li, J. Xu, R.M. Myers, P.W. Laird, L. Cope, J.G. Herman, H. Shen, D.J. Weisenberger, H. Noushmehr, F. Pan, T. Triche, Jr., B.P. Berman, D.J. Van den Berg, J. Buckley, S.B. Baylin, P.T. Spellman, E. Purdom, P. Neuvial, H. Bengtsson, L.R. Jakkula, S. Durinck, J. Han, S. Dorton, H. Marr, Y.G. Choi, V. Wang, N.J. Wang, J. Ngai, J.G. Conboy, B. Parvin, H.S. Feiler, T.P. Speed, J.W. Gray, N.D. Socci, Y. Liang, B.S. Taylor, N. Schultz, L. Borsu, A.E. Lash, C. Brennan, A. Viale, C. Sander, M. Ladanyi, K.A. Hoadley, S. Meng, Y. Du, Y. Shi, L. Li, Y.J. Turman, D. Zang, E.B. Helms, S. Balu, X. Zhou, J. Wu, M.D. Topal, D.N. Hayes, C.M. Perou, J. Zhang, C.J. Wu, S. Shukla, A. Sivachenko, R. Jing, Y. Liu, M. Noble, H. Carter, D. Kim, R. Karchin, J.E. Korkola, L.M. Heiser, R.J. Cho, Z. Hu, E. Cerami, A. Olshen, B. Reva, Y. Antipin, R. Shen, P. Mankoo, R. Sheridan, G. Ciriello, W.K. Chang, J.A. Bernanke, D. Haussler, C.C. Benz, J.M. Stuart, S.C. Benz, J.Z. Sanborn, C.J. Vaske, J. Zhu, C. Szeto, G.K. Scott, C. Yau, M.D. Wilkerson, N. Zhang, R. Akbani, K.A. Baggerly, W.K. Yung, J.N. Weinstein, T. Shelton, D. Grimm, M. Hatfield, S. Morris, P. Yena, P. Rhodes, M. Sherman, J. Paulauskis, S. Millis, A. Kahn, J.M. Greene, R. Sfeir, M.A. Jensen, J. Chen, J. Whitmore, S. Alonso, J. Jordan, A. Chu, J. Zhang, A. Barker, C. Compton, G. Eley, M. Ferguson, P. Fielding, D.S. Gerhard, R. Myles, C. Schaefer, K.R.M. Shaw, J. Vaught, J.B. Vockley, P.J. Good, M.S. Guyer, B. Ozenberger, J. Peterson, E. Thomson and N. Canc Genome Atlas Res, "Integrated genomic analyses of ovarian carcinoma," Nature, 2011, 474(7353), 609-615.
208. Y. Yang, L.K. Iyer, S.J. Adelstein, and A.I. Kassis, "Integrative Genomic Data Mining for Discovery of Potential Blood-Borne Biomarkers for Early Diagnosis of Cancer," Plos One, 2008, 3(11).
209. J. Irgon, C.C. Huang, Y. Zhang, D. Talantov, G. Bhanot, and S. Szalma, "Robust multi-tissue gene panel for cancer detection," Bmc Cancer, 2010, 10.
210. V. Pedraza, J.A. Gomez-Capilla, G. Escaramis, C. Gomez, P. Torne, J.M. Rivera, A. Gil, P. Araque, N. Olea, X. Estivill, and M. Esther Farez-Vidal, "Gene Expression Signatures in Breast Cancer Distinguish Phenotype Characteristics, Histologic Subtypes, and Tumor Invasiveness," Cancer, 2010, 116(2), 486-496.
211. S.S.K. Tang and G.P.H. Gui, "Biomarkers in the diagnosis of primary and recurrent breast cancer," Biomarkers in Medicine, 2012, 6(5), 567-585.
212. S.M. Hanash, C.S. Baik, and O. Kallioniemi, "Emerging molecular biomarkers-blood-based strategies to detect and monitor cancer," Nature Reviews Clinical Oncology, 2011, 8(3), 142-150.
213. J. Vansteenkiste, C. Dooms, C. Mascaux, and K. Nackaerts, "Screening and early detection of lung cancer," Annals of Oncology, 2012, 23, 320-327.
214. R.K. Nibbe, M. Koyutuerk, and M.R. Chance, "An Integrative -omics Approach to Identify Functional Sub-Networks in Human Colorectal Cancer," Plos Computational Biology, 2010, 6(1).
215. E.R. Fearon, Molecular Genetics of Colorectal Cancer, in Annual Review of Pathology: Mechanisms of Disease, Vol 6, A.K. Abbas, S.J. Galli, and P.M. Howley, Editors. 2011. 479-507.
216. Y. Mori, A.V. Olaru, Y.L. Cheng, R. Agarwal, J. Yang, D. Luvsanjav, W.N. Yu, F.M. Selaru, S. Hutfless, M. Lazarev, J.H. Kwon, S.R. Brant, M.R. Marohn, D.F. Hutcheon, M.D. Duncan, A. Goel, and S.J. Meltzer, "Novel candidate colorectal cancer biomarkers identified by methylation microarray-based scanning," Endocrine-Related Cancer, 2011, 18(4), 465-478.
217. M. de Wit, R.J.A. Fijneman, H.M.W. Verheul, G.A. Meijer, and C.R. Jimenez, "Proteomics in colorectal cancer translational research: Biomarker discovery for clinical applications," Clinical Biochemistry, 2013, 46(6), 466-479.
218. N. Pertega-Gomes, J.R. Vizcaino, C. Gouveia, C. Jeronimo, R.M. Henrique, C. Lopes, and F. Baltazar, "Monocarboxylate transporter 2 (MCT2) as putative biomarker in prostate cancer," Prostate, 2013, 73(7), 763-769.
219. F. Rizzi, L. Belloni, P. Crafa, M. Lazzaretti, D. Remondini, S. Ferretti, P. Cortellini, A. Corti, and S. Bettuzzi, "A Novel Gene Signature for Molecular Diagnosis of Human Prostate Cancer by RT-qPCR," Plos One, 2008, 3(10).
220. S. Rodriguez, O.A. Al-Ghamdi, K. Burrows, P.A.I. Guthrie, J.A. Lane, M. Davis, G. Marsden, K.K. Alharbi, A. Cox, F.C. Hamdy, D.E. Neal, J.L. Donovan, and I.N.M. Day, "Very Low PSA Concentrations and Deletions of the KLK3 Gene," Clinical Chemistry, 2013, 59(1), 234-244.
221. X.C. Zhou, J.H. Mao, J.M. Ai, Y.P. Deng, M.R. Roth, C. Pound, J. Henegar, R. Welti, and S.A. Bigler, "Identification of Plasma Lipid Biomarkers for Prostate Cancer by Lipidomics and Bioinformatics," Plos One, 2012, 7(11).
222. A. Jimeno and M. Hidalgo, "Molecular biomarkers: their increasing role in the diagnosis, characterization, and therapy guidance in pancreatic cancer," Molecular Cancer Therapeutics, 2006, 5(4), 787-796.
223. R.G. Hamilton, D.W. MacGlashan, and S.S. Saini, "IgE antibody-specific activity in human allergic disease," Immunologic Research, 2010, 47(1-3), 273-284.
224. E. Churchill, G. Budas, A. Vallcntin, T. Koyanag, and D. Mochly-Rosen, "PKC Isozymes in chronic cardiac disease: Possible therapeutic targets?," Annual Review of Pharmacology and Toxicology, 2008, 48, 569-599.
225. O. Konopatskaya and A.W. Poole, "Protein kinase C alpha: disease regulator and therapeutic target," Trends in Pharmacological Sciences, 2010, 31(1), 8-14.
226. J. Alom, R. Galard, R. Catalan, J.M. Castellanos, S. Schwartz, and E. Tolosa, "Cerebrospinal fluid neuropeptide Y in Alzheimer's disease," Eur Neurol, 1990, 30(4), 207-210.
227. M. Decressac, B. Wright, P. Tyers, A. Gaillard, and R.A. Barker, "Neuropeptide Y modifies the disease course in the R6/2 transgenic model of Huntington's disease," Experimental Neurology, 2010, 226(1), 24-32.
228. W.M.C. Van Roon-Mom, S.J. Reid, R.L.M. Faull, and R.G. Snell, "TATA-Binding protein in neurodegenerative disease," Neuroscience, 2005, 133(4), 863-872.
229. S.M. Park, J.Y. Ahn, M. Jo, D.K. Lee, J.T. Lis, H.G. Craighead, and S. Kim, "Selection and elution of aptamers using nanoporous sol-gel arrays with integrated microheaters," Lab on a Chip, 2009, 9(9), 1206-1212.
230. G. Lagalla, M. Millevolte, M. Capecci, L. Provinciali, and M.G. Ceravolo, "Botulinum toxin type A for drooling in Parkinson's disease: A double-blind, randomized, placebo-controlled study," Movement Disorders, 2006, 21(5), 704-707.
231. L. Chaiet and F.J. Wolf, "The Properties of Streptavidin, a Biotin-Binding Protein Produced by Streptomycetes," Arch Biochem Biophys, 1964, 106, 1-5.
232. G.M. Hirschfield and M.B. Pepys, "C-reactive protein and cardiovascular disease: new insights from an old molecule," Qjm-an International Journal of Medicine, 2003, 96(11), 793-807.
233. C.J. Huang, H.I. Lin, S.C. Shiesh, and G.B. Lee, "Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX)," Biosensors & Bioelectronics, 2010, 25(7), 1761-1766.
234. M. Kew, "Alpha-Fetoprotein in Primary Liver Cancer and Other Diseases," Gut, 1974, 15(10), 814-821.
235. M.M. Ho, A.V. Ng, S. Lam, and J.Y. Hung, "Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells," Cancer Research, 2007, 67(10), 4827-4833.
236. G.F. Deboer, W. Back, and A.D.M.E. Osterhaus, "An Elisa for Detection of Antibodies against Influenza-a Nucleoprotein in Humans and Various Animal Species," Archives of Virology, 1990, 115(1-2), 47-61.
237. Y.N. Yang, S.K. Hsiung, and G.B. Lee, "A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure," Microfluidics and Nanofluidics, 2009, 6(6), 823-833.
238. C.H. Weng, K.Y. Lien, S.Y. Yang, and G.B. Lee, "A suction-type, pneumatic microfluidic device for liquid transport and mixing," Microfluidics and Nanofluidics, 2011, 10(2), 301-310.
239. S.Y. Yang, J.L. Lin, and G.B. Lee, "A vortex-type micromixer utilizing pneumatically driven membranes," Journal of Micromechanics and Microengineering, 2009, 19(3).
240. C.H. Wang and G.B. Lee, "Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels," Journal of Micromechanics and Microengineering, 2006, 16(2), 341-348.
241. A. Sugiura, K. Tobita, and E.D. Kilbourne, "Isolation and preliminary characterization of temperature-sensitive mutants of influenza virus," Journal of Virology, 1972, 10(4), 639-647.
242. F.H. Wians, "Use of Excel Spreadsheets to Create Interpretive Reports for Laboratory Tests Requiring Complex Calculations," Labmedicine, 2009, 40(1), 5-12.
243. J.S. Beveridge, J.R. Stephens, and M.E. Williams, "The Use of Magnetic Nanoparticles in Analytical Chemistry," Annual Review of Analytical Chemistry, Vol 4, 2011, 4, 251-273.
244. D.Y. Kwok and A.W. Neumann, "Contact angle measurement and contact angle interpretation," Advances in Colloid and Interface Science, 1999, 81(3), 167-249.
245. H.K. Nguyen, P. Lemieux, S.V. Vinogradov, C.L. Gebhart, N. Guerin, G. Paradis, T.K. Bronich, V.Y. Alakhov, and A.V. Kabanov, "Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents," Gene Therapy, 2000, 7(2), 126-138.
246. C.C. Huang, C.N. Chang, and C.S. Yeh, "A thermolysis approach to simultaneously achieve crystal phase- and shape-control of ternary M-Fe-O metal oxide nanoparticles," Nanoscale, 2011, 3(10), 4254-4260.
247. C.C. Huang, K.Y. Chuang, C.P. Chou, M.T. Wu, H.S. Sheu, D.B. Shieh, C.Y. Tsai, C.H. Su, H.Y. Lei, and C.S. Yeh, "Size-control synthesis of structure deficient truncated octahedral Fe3-delta O4 nanoparticles: high magnetization magnetites as effective hepatic contrast agents," Journal of Materials Chemistry, 2011, 21(20), 7472-7479.
248. M.Y. Liao, C.C. Huang, M.C. Chang, S.F. Lin, T.Y. Liu, C.H. Su, C.S. Yeh, and H.P. Lin, "Synthesis of magnetic hollow nanotubes based on the kirkendall effect for MR contrast agent and colorimetric hydrogen peroxide sensor," Journal of Materials Chemistry, 2011, 21(22), 7974-7981.
249. V. Berbenni, A. Marini, A. Profumo, and L. Cucca, "The effect of high energy milling on the solid state synthesis of MnFe2O4 from mixtures of MnO-Fe2O3 and Mn3O4-Fe2O3," Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences, 2003, 58(5), 415-422.
250. P. Hu, L.J. Yu, A.H. Zuo, C.Y. Guo, and F.L. Yuan, "Fabrication of Monodisperse Magnetite Hollow Spheres," Journal of Physical Chemistry C, 2009, 113(3), 900-906.
251. N.M. Deraz and A. Alarifi, "Controlled Synthesis, Physicochemical and Magnetic Properties of Nano-Crystalline Mn Ferrite System," International Journal of Electrochemical Science, 2012, 7(6), 5534-5543.
252. B.J. Kirby and E.F. Hasselbrink, "Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations," Electrophoresis, 2004, 25(2), 187-202.
253. B.J. Kirby and E.F. Hasselbrink, "Zeta potential of microfluidic substrates: 2. Data for polymers," Electrophoresis, 2004, 25(2), 203-213.
254. K.H. Liu, X.Y. Wang, W. Fan, Q. Zhu, J.Y. Yang, J. Gao, and S. Gao, "Degradable polyethylenimine derivate coupled to a bifunctional peptide R13 as a new gene-delivery vector," International Journal of Nanomedicine, 2012, 7, 1149-1162.
255. L.F. Zhang, Z.Z. Chen, and Y.F. Li, "Dual-degradable disulfide-containing PEI-Pluronic/DNA polyplexes: transfection efficiency and balancing protection and DNA release," International Journal of Nanomedicine, 2013, 8, 3689-3701.
256. I. Wong and C.M. Ho, "Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices," Microfluidics and Nanofluidics, 2009, 7(3), 291-306.
257. J.W. Zhou, D.A. Khodakov, A.V. Ellis, and N.H. Voelcker, "Surface modification for PDMS-based microfluidic devices," Electrophoresis, 2012, 33(1), 89-104.
258. A.T.J. Kadaksham, P. Singh, and N. Aubry, "Dielectrophoresis of nanoparticles," Electrophoresis, 2004, 25(21-22), 3625-3632.
259. P.Y. Chiou, A.T. Ohta, A. Jamshidi, H.Y. Hsu, and M.C. Wu, "Light-actuated ac electroosmosis for nanoparticle manipulation," Journal of Microelectromechanical Systems, 2008, 17(3), 525-531.
260. W.H. Chang, S.Y. Yang, C.H. Wang, M.A. Tsai, P.C. Wang, T.Y. Chen, S.C. Chen, and G.B. Lee, "Rapid isolation and detection of aquaculture pathogens in an integrated microfluidic system using loop-mediated isothermal amplification," Sensors and Actuators B-Chemical, 2013, 180, 96-106.
261. L.Y. Hung, J.C. Chang, Y.C. Tsai, C.C. Huang, C.P. Chang, C.S. Yeh, and G.B. Lee, "Magnetic nanoparticle-based immunoassay for rapid detection of influenza infections by using an integrated microfluidic system," Nanomedicine-Nanotechnology Biology and Medicine, 2014, 10(4), 819-829.
262. S.B. Huang, M.H. Wu, Z.F. Cui, Z. Cui, and G.B. Lee, "A membrane-based serpentine-shape pneumatic micropump with pumping performance modulated by fluidic resistance," Journal of Micromechanics and Microengineering, 2008, 18(4).
263. A.D. Keefe, S. Pai, and A. Ellington, "Aptamers as therapeutics," Nature Reviews Drug Discovery, 2010, 9(7), 537-550.
264. J.P. Wang, Y.L. Liu, T. Teesalu, K.N. Sugahara, V.R. Kotamrajua, J.D. Adams, B.S. Ferguson, Q. Gong, S.S. Oh, A.T. Csordas, M. Cho, E. Ruoslahti, Y. Xiao, and H.T. Soh, "Selection of phage-displayed peptides on live adherent cells in microfluidic channels," Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(17), 6909-6914.
265. K. Kemper, P.R. Prasetyanti, W. De Lau, H. Rodermond, H. Clevers, and J.P. Medema, "Monoclonal Antibodies Against Lgr5 Identify Human Colorectal Cancer Stem Cells," Stem Cells, 2012, 30(11), 2378-2386.
266. R.C. Langan, J.E. Mullinax, S. Ray, M.T. Raiji, N. Schaub, H.W. Xin, T. Koizumi, S.M. Steinberg, A. Anderson, G. Wiegand, D. Butcher, M. Anver, A.J. Bilchik, A. Stojadinovic, U. Rudloff, and I. Avital, "A Pilot Study Assessing the Potential Role of non-CD133 Colorectal Cancer Stem Cells as Biomarkers," Journal of Cancer, 2012, 3, 231-240.
267. S.H. Li, H. Xu, H.M. Ding, Y.P. Huang, X.X. Cao, G. Yang, J. Li, Z.G. Xie, Y.H. Meng, X.B. Li, Q. Zhao, B.F. Shen, and N.S. Shao, "Identification of an aptamer targeting hnRNP A1 by tissue slide-based SELEX," Journal of Pathology, 2009, 218(3), 327-336.
268. W.M. Li, T. Bing, J.Y. Wei, Z.Z. Chen, D.H. Shangguan, and J. Fang, "Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells," Biomaterials, 2014, 35(25), 6998-7007.
269. H. Vorum, D. Bang, and K. Fisker, "New Procedure for Analyzing Drug-Binding Data, Exemplified by Warfarin-Binding to Human Serum-Albumin," Biochemical Pharmacology, 1993, 45(8), 1715-1720.
270. M.N. Ara, M. Hyodo, N. Ohga, K. Hida, and H. Harashima, "Development of a Novel DNA Aptamer Ligand Targeting to Primary Cultured Tumor Endothelial Cells by a Cell-Based SELEX Method," Plos One, 2012, 7(12).
271. E.Y. Kim, J.W. Kim, W.K. Kim, B.S. Han, S.G. Park, B.H. Chung, S.C. Lee, and K.H. Bae, "Selection of Aptamers for Mature White Adipocytes by Cell SELEX Using Flow Cytometry," Plos One, 2014, 9(5).