研究生: |
張啟鴻 |
---|---|
論文名稱: |
鎳基超合金Hastelloy-N 與 Hastelloy-B3 於LiF-NaF-KF熔鹽中之高溫腐蝕與微結構變化研究 High Temperature Corrosion Behavior And Microstructural Evolution of Nickel-Based Alloys Hastelloy-N And Hastelloy-B3 in LiF-NaF-KF Molten Salt |
指導教授: | 開執中 |
口試委員: |
歐陽汎怡
黃爾文 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 112 |
中文關鍵詞: | 熔鹽 、FLiNaK 、高溫腐蝕 、Hastelloy-N |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熔鹽反應器(MSR)是第四代核反應器的一種,利用氟化鹽的高溫融熔態作為一次迴路的冷卻劑。因為操作溫度高於傳統的沸水式(BWR)和壓水式(PWR)反應器,因此用於熔鹽反應器中的結構材料勢必將面臨由高操作溫度和氟化融熔鹽的強腐蝕性所帶來的挑戰。
為了調查合金在熔鹽中的腐蝕機制,並分析其作為熔鹽反應器中結構材料的適用性,我們挑選Hastelloy-N和Hastelloy-B3此兩種鎳基超合金放入氟化融熔鹽中進行高溫腐蝕實驗,本實驗用的氟化鹽為氟化鋰、氟化鈉和氟化鉀構成的三元共晶鹽,FLiNaK(LiF-NaF-KF:46.5-11.5-42%)。
腐蝕實驗在625合金作成的壓力鍋中進行,壓力為常壓,並通以氬氣使得實驗環境為惰性環境。之後分別在700°C利用含水量3.19wt%的熔鹽進行100、200、500和1000小時的靜態腐蝕以及含水量1.91wt%的熔鹽中進行100和200小時的靜態腐蝕實驗。
實驗顯示試片之腐蝕質量損失在後期會漸趨平緩跟試片表面成分分布有關,意即實驗後期在試片表面能夠被腐蝕之元素已逐漸減少。腐蝕速率會被固體擴散機制所影響,熔鹽含水量與腐蝕質量損失有正相關的關係。低含水量的熔鹽腐蝕試片其晶界腐蝕寬度較窄,pitting也相對較小。腐蝕型態一開始是沿著晶界以及twin boundary的沿晶腐蝕,但會逐漸偏向均勻腐蝕。本實驗觀察到在Hastelloy-B3中Mo會被熔鹽腐蝕,而在Hastelloy-N中Cr會被熔鹽腐蝕,用於此種環境的Hastelloy-N以及Hastelloy-B3在後期會因為合金表面不再fresh而使得腐蝕量減少,若再佐以更精密的除水技術以及更低的熔鹽含水量,則可望用於未來熔鹽式反應器之結構材料。
[1] D.F. Williams, Assessment of Candidate Molten Salt Coolants for the NGNP/NHI
Heat-Transfer Loop, ORNL/TM-2006/69, 2006, pp. 1–44.
[2] A.K. Misra, J.D. Whittenberger, in: Proceedings of the 22nd Intersociety Energy
Conversion Engineering Conference cosponsored by the AIAA ANS ASME SAE IEEE
ACS and AIChE Philadelphia, PA, 10–14 August, 1987, AIAA-87-9226.
[3] C. Forsberg, P. Peterson, H. Zhao, J. “High-Temperature Liquid-Fluoride-Salt Closed-Brayton-Cycle Solar Power Towers” Solar Energy Eng. 129 (2007) 141–146.
[4] W. D. Manly et al., “Metallurgical Problems in Molten Fluoride Systems,” Progress in Nuclear Energy, Series IV 2, pp. 164–179 (1960)
[5] W. D. Manly et al., “Metallurgical Problems in Molten Fluoride Systems,” Progress in Nuclear Energy, Series IV 2, pp. 164–179 (1960)
[6] D. Williams, D. Wilson, J. Keiser, L. Toth, J. Caja, “Research on Molten Fluorides as High Temperature Heat Transfer Agents” Proceedings of Global 2003,
Embedded Topical in 2003 American Nuclear Society Winter Meeting,
Session 2A: Coolant/Material Interactions in Advanced Reactor Systems, New
Orleans, LA, American, 16–20 November 2003.
[7] Luke C. Olson , James W. Ambrosek, Kumar Sridharan, Mark H. Anderson, Todd R. Allen, ‘’Materials corrosion in molten LiF-NaF-KF salt’’, Journal of Fluorine Chemistry 130, (2009) 67–73
[8]游柏堅, 「鎳基合金於FLiNaK融鹽之腐蝕行為研究」, 國立清華大學, 碩士論文, 民國九十九年
[9] Forsberg C.W., "Thermal- and Fast-Spectrum Molten Salt Reactors for Actinide Burning and Fuel Production," Paper in Global 07: Advanced Nuclear Fuel Cycles and System, p. ANS Manuscript Number: 175768, 2007.
[10] W. R. Grimes et al., “Fluid Fuel Reactors”, Chap. 12, H. G. Macpherson, Addison-Wesley, NY, (1958)
[11] D. F .Williams, L. M.Toth, and K.T. Clarno , “Assessment of candidate molten salt coolants for the Advanced High-Temperature Reactor (AHTR)”, Oak Ridge National Laboratory, ORNL/TM-2006/12, March 2006.
[12]R. E. Thoma, ‘’Phase Diagrams of Nuclear Reactor Materials’’, ORNL-2548, Oak Ridge National Laboratory, Oak Ridge, TN (1959)
[13] Masatoshi Kondo, Takuya Nagasaka, Valentyn Tsisar, Akio Sagara, Takeo Muroga, Takashi Watanabe, Tomoko Oshima, Yukihiro Yokoyama, Hiroshi Miyamoto, Eiji Nakamura, Naoki Fujii, ‘’Corrosion of reduced activation ferritic martensitic steel JLF-1 in purified Flinak at static and flowing conditions’’, Fusion Engineering and Design 85 (2010) 1430–1436
[14] D. E. Robertson et al., ‘’Low-Level Radioactive Waste Classification, Characterization, and Assessment: Waste Streams and Neutron-Activated Metals’’, NUREG/CR-6567, PNNL-11659 (2000)
[15] Luke Olson, Kumar Sridharan , Mark Anderson, Todd Allen, ‘’Nickel-plating for active metal dissolution resistance in molten fluoride salts’’, Journal of Nuclear Materials 411 (2011) 51–59
[16] Jens Schmidt, Matthias Scheiffele, Matteo Crippa, Per F. Peterson, Eugenio Urquiza, Kumar Sridharan, Luke C. Olson, Mark H. Anderson, Todd R. Allen, Yun Chen, ‘’Design, Fabrication, and Testing of Ceramic Plate-Type Heat Exchangers with Integrated Flow Channel Design’’, International Journal of Applied Ceramic Technology, Vol. 8, No. 5, 1073–1086 (2011)
[17]R. B. Briggs, “Molten Salt Reactor Program Semiannual Progress Report for Period Ending”, ORNL-3282, Oak Ridge National Laboratory, Oak Ridge, TN (1962)
[18] Masatoshi Kondo, Takuya Nagasaka, Qi Xu, Takeo Muroga, Akio Sagara,
Nobuaki Noda, Daisuke Ninomiya, Masaru Nagura, Akihiro Suzuki,
Takayuki Terai, Naoki Fujii, “Corrosion characteristics of reduced activation ferritic steel,
JLF-1 (8.92Cr–2W) in molten salts Flibe and Flinak”, Fusion Engineering and Design 84 (2009) 1081–1085
[19] Masatoshi Kondo , Takeo Muroga , Akio Sagara , Tsisar Valentyn, Akihiro Suzuki , Takayuki Terai ,Minoru Takahashi, Naoki Fujii, Yukihiro Yokoyama, Hiroshi Miyamoto, Eiji Nakamura, “Flow accelerated corrosion and erosion–corrosion of RAFM steel in liquid
breeders”, Fusion Engineering and Design 86 (2011) 2500–2503
[20]Manohar S. Sohal, Matthias A. Ebner, Piyush Sabharwall, Phil Sharpe, “Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties” INL/EXT-10-18297 (2010)
[21] J. W. Koger, ‘’Effect Of FeF2 Addition On Mass Transfer In A Hastelloy N-LiF-BeF2-UF4 Thermal Convection Loop System’’ , ORNL-4188, Oak Ridge National Laboratory, Oak Ridge, TN (1972)
[22] I. Ozeryanaya, “Corrosion of molten by molten salts in heat-treatment processes, “, Metal Scienece and Heat Treatmeat, Vol. 27, No. 3, pp. 184-188. (1985)
[23] Cramer, Stephen D.; Covino, Bernard S., Jr. , ASM Handbook Vol 13A:Corrosion: Fundamentals, Testing, and Protection, ASM International, 2003, pp 124-128 .
[24] Blandine Laurenty, “The LM-LS experiment: investigating corrosion control, in Liquid Fluoride Salts, by Liquid alkali Metal”, Report UCBTH-06-002 (2006)
[25] C. J. Tyreman, “The High Tem-perature Corrosion of Metals and Alloys in HF-containing Environments,” University of Manchester, PhD thesis. (1986)
[26] C.F.Weaver and H.A.Friedman “A Literature Survey Of Flourides And Oxyflurides Of Molybdenum”, ORNL-1976, Oak Ridge National Laboratory, Oak Ridge, TN (1967)
[27] J. W. Koger, ‘’Corrosion And Mass Transfer Characteristics Of NaBF4-NaF(92-8 mole %) In Hastelloy N’’ , ORNL-3866, Oak Ridge National Laboratory, Oak Ridge, TN (1972)
[28]J. W. Koger, ‘’Mass Transfer between Hastelloy N and Alloy No.25 In a Molten Sodium Flurobrate Mixture’’ Oct , 1971, ORNL-3488, Oak Ridge National Laboratory, Oak Ridge, TN (1971)
[29]Mark T. Sautman, “Molten Salt Reactor Experiment: Potential Safety Issues” DEFENSE NUCLEAR FACILITIES SAFETY BOARD (1995)
[30]罔毅民, 「高鎳鉬合金在熔鹽中脫溶腐蝕的研究」, 中國腐蝕與防蝕學報第8期(1981)
[31] J. H. DeVan, R. B. Evans III “Corrosion Behavior of Materials In Flouride Salt Mixtures”, ORNL-0328, Oak Ridge National Laboratory, Oak Ridge, TN (1962)
[32]J. R. Keiser, “Compatibility Studies of Potential Molten-Salt Breeder Reactor Materials in Molten Fluoride Salts”, ORNL-TM-5783, Oak Ridge National Laboratory, Oak Ridge, TN (1977)
[33]W.R GRIMES, ‘’Molten Salt Reactor Chemistry’’, Nuclear Applications and Technologies, v.8, 2, p137, Feb. (1970)
[34] Piyush Sabharwall et al., “Molten Salt for High Temperature Reactors: Univeristy of Wisconsin-Madison Molten Salt Corrosion and Flow Loop Experiments- Issues Identified and Path Flow Loop Experiment” INL/EXT-10-18090 (2010)
[35] G. J. Janz, Molten Salts Handbook, Academic Press, NY (1967)
[36] B. Laurenty, G. Fukuda, D.D. Damba, P.F. Peterson “Inhibiting corrosion by molten fluoride salts: investigation on Flinak,” AIChE 2005 Annual Meeting, Cincinnati, Ohio, Oct. 31 – Nov. 4, 2005.
[37] Grimes, W. R., E. G. Bohlmann, A. S. Meyer, and J. M. Dale, 1972, “Fuel can Coolant Chemistry”, Chapter 5 in M. W. Rosenthal, P. N. Haubenreich, and R. B. Briggs, The Development Status of Molten-Salt Breeder Reactors, ORNL-4812, Oak Ridge National Laboratory, Oak Ridge, TN, August 1972.
[38] White, S. H. (1983). “Halides,” in D. G. Lovering and R. J. Gale, editors, Molten Salt Techniques, Volume 1, Chapter 2, Plenum Press, New York, 1983.
[39] B. Kubı´kova´, M. Kucharı´k, R. Vasiljev, and M. Bocˇa, “Phase Equilibria, Volume Properties, Surface Tension, and Viscosity of the (FLiNaK)eut + K2NbF7 Melts,” J. Chem. Eng. Data 2009, 54, 2081–2084
[40] Mamantov, Gleb ,” Electroplating of Refractory Metals Using Haloaluminate Melts”, Final rept. 1 Aug 93-15 Aug 96
[41]Peter T. Kissinger and William R. Heineman, “Laboratory Techniques in
Electroanalytical Chemistry,” Marcel Dekker, New York, 1984.
[42] W. R. Grimes and D. R. Cuneo, “Molten Salts as Reactor Fuels,” Chapter 17 in Reactor
Handbook, 2nd ed., Vol. 1: Materials, ed. C. R. Tipton, Jr., Interscience Publishers, Inc., NY
(1960).
[43] V. Kirillov, V. Fedulov, “The Corrosion Resistance of 12Kh18N10T Steel in Molten Fluoride Salts”, material science, Vol. 16, No. 6, pp 22-25 (1980)
[44] Y. Jin, M.C. Chaturvedi , Y.F. Han, Y.G. Zhang, “Crystal structure of δ -NiMo phase in a ternary Ni-Mo-A1 alloy”, Materials Science and Engineering A225 (1997) 78-84
[45] H. M. TAWANCY, ‘’Long-range ordering behaviour and mechanical
properties of Ni-Mo-based alloys’’, Journal of materials science 30 (1995) 522-537
[46] R.E. Gehlbach, H.E. McCoy, Jr., Phase Instability in Hastelloy N in Superalloys, TMS, 1968
[47] Y. Wang , C. Woodward , S.H. Zhou , Z.-K. Liu , L.-Q. Chen, “Structural stability of Ni–Mo compounds from first-principles calculations”, Scripta Materialia 52 (2005) 17–20
[48] (2010). Appendix 6.0 molten salt reactor. [Online].Available:http://nuclear.inl.gov/deliverables/docs/appendix_6.pdf