研究生: |
楊沛泓 Yang, Pei-Hung |
---|---|
論文名稱: |
探討海馬迴中 principal neuron 及 interneuron 之軸突生長能力有何差異 Determine the growth capacity of axon between principal neuron and interneuron in the cultured hippocampal cells |
指導教授: | 張兗君 |
口試委員: |
葉世榮
周韻家 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 軸突生長能力 |
外文關鍵詞: | principal neuron, interneuron |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
海馬迴中的神經網路主要由兩種神經細胞所組成:分別是提供興奮性神經衝動的 principal neuron 及擁有抑制能力的 interneuron。雖然 interneuron 僅佔有少數的組成,但因為其多樣的形態及生理功能,在修飾及整合神經網路訊號上扮演著相當重要的角色。一般認為principal neuron 能夠發展出較長的軸突,並且延伸到遠端的目標腦區,而 interneuron 僅能長出較短的軸突,與周圍的目標連結,形成局部性抑制迴路 (local inhibitory circuit)。在本實驗中將探討軸突生長能力的差異是否受到環境中目標有無 (target-specify) 的影響,抑或是由內在能力 (intrinsic capacity) 導致的生長限制。由於在大腦皮質區及海馬迴中,大部分的 principal neuron 皆使用麩胺酸 (glutamate) 作為神經傳導物質。以及不同的 interneuron 族群則表現不同的 calcium-binding protein,因此在本實驗中我們使用 vGLUT1 抗體來標記大鼠海馬迴中的 principal neuron 及 calbidin 和 parvalbumin 抗體來標記 interneuron。為了模擬神經細胞在真實生長環境中,在此我們將細胞培養在覆蓋 poly-L-lysine (PLL) 的蓋玻片上,軸突在上面可隨意地與周圍目標連結。結果發現當有生長目標時 principal neuron 軸突生長能力顯著的大於 interneuron。接著我們利用微接觸壓印配合模版侷限技術 (Wu et al., 2010) 將目標去除後,卻觀察到 interneuron 軸突生長能力也能夠提升到與 principal neuron 相當的程度。經由本實驗結果我們推測,在胚胎時期海馬迴中的 interneuron 之軸突生長能力與 principal neuron 相當,當軸突逐漸發育接觸到目標之後,才受到目標所釋放的訊息分子的影響導致生長停止。
Hippocampal neural network is mainly composed of two neuronal populations, the majority of the network is principal neurons, which provide the excitatory synaptic output to the circuit, and the rest is the inhibitory interneuron. Even the less number of interneuron population, because of its diverse morphology and physiological function, interneurons play an important role in the modification and integration of hippocampal neural network. In general, principal neuron can develop very long axons to target distal brain region. In contrast to principal neurons, interneurons can only extend much shorter axons to surrounding target to form local inhibitory circuit, in this study, we try to determine whether the axon growth capacity is caused by target-specify or the intrinsic capacity.
Because most principal neurons in the cerebral cortex and hippocampus use glutamate as neurotransmitter, so we use vesicular glutamate transporter 1 (vGLUT1) to label hippocampal principal neurons. Calcium-binding proteins also expressed in non-overlapped hippocampal interneuronal population, so we can use calbidin and parvalbumin to label different interneuron in the hippocampus. We cultured the hippocampal neurons on the PLL-covered coverslips to mimic the real growth environment for the hippocampal neurons that axonal fibers can randomly extend to the targets, in this experiment we found that the axon growth capacity of principal neuron is significantly greater than interneurons. Then we use micro-contact printing to remove the targets in the cultured environment, results show that the axon growth capacity of interneurons can elevate a great extent to the level of principal neurons.
Anastasiades, P.G., and Butt, S.J. (2011). Decoding the transcriptional basis for GABAergic interneuron diversity in the mouse neocortex. The European journal of neuroscience 34, 1542-1552.
Bartlett, W.P., and Banker, G.A. (1984). An electric microscopy study of the development of axons and dendrites by hippocampal neurons in culture. II. Synaptic relationships. Journal of Neuroscience 4 (8):1954-1965.
Bigbee, J.W., Sharma, K.V., Chan, E.L.P., and Bogler, O. (2000). Evidence for the direct role of acetylcholinesterase in neurite outgrowth in primary dorsal root ganglion neurons. Brain Res 861, 354-362.
Bixby, J.L., and Harris, W.A. (1991). Molecular mechanism of axon growth and guidance. Annual Review of cell biology. 7:117-159.
Bouquet, C. and Nothias, F. (2007). Molecular mechanism of axon growth. Advances in Mucosal Immunology, Pts a and B 621:1-16.
Bray, G.M. and Aguayo, A.J. (1989). Exploring the capacity of CNS neurons to survive injury, regrow axons, and form synapses in adult mammals. Neural Regeneration and Transplantation. In: Seil, F. J. (Ed), Alan liss, New York, pp. 67-68.
Brewer, G. J., J. R. Torricelli, et al. (1993). "Optimized Survival of Hippocampal-Neurons in B27-Supplemented Neurobasal(Tm), a New Serum-Free Medium Combination." Journal of Neuroscience Research 35(5): 567-576.
Chen, D.F., Jhaveri, S., and Schneider, G.E. (1995). Intrinsic Changes in Developing Retinal Neurons Result in Regenerative Failure of Their Axons. P Natl Acad Sci USA 92, 7287-7291.
Craig, A.M., and Banker, G. (1994). Neuronal Polarity. Annual review of neuroscience 17, 267-310.
Danglot, L., Triller, A., and Marty, S. (2006). The development of hippocampal interneurons in rodents. Hippocampus 16, 1032-1060.
da Silva, J.S., and Dotti, C.G. (2002). Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nature reviews Neuroscience 3, 694-704.
Davies, A.M. (1989). Intrinsic differences in the growth rate of early nerve fibres related to target distance. Nature 337, 553-555.
De Gois, S., Schafer, M.K.H., Defamie, N., Chen, C., Ricci, A., Weihe, E., Varoqui, H., and Erickson, J.D. (2005). Homeostatic scaling of vesicular glutamate and GABA transporter expression in rat neocortical circuits. Journal of Neuroscience 25, 7121-7133.
Dotti, C.G., Sullivan, C.A., and Banker, G.A. (1988). The Establishment of Polarity by Hippocampal-Neurons in Culture. Journal of Neuroscience 8, 1454-1468.
Filbin, M.T. (2003). Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS (vol 4, pg 703, 2003). Nature Reviews Neuroscience 4, 1019-1019.
Fishell, G., and Hanashima, C. (2008). Pyramidal neurons grow up and change their mind. Neuron 57, 333-338.
Gao, Y., Deng, K.W., Hou, J.W., Bryson, J.B., Barco, A., Nikulina, E., Spencer, T., Mellado, W., Kandel, E.R., and Filbin, M.T. (2004). Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 44, 609-621.
Gelman, D.M., and Marin, O. (2010). Generation of interneuron diversity in the mouse cerebral cortex. The European journal of neuroscience 31, 2136-2141.
Gieffers, C., Peters, B.H., Kramer, E.R., Dotti, C.G., and Peters, J.M. (1999). Expression of the CDH1-associated form of the anaphase-promoting complex in postmitotic neurons. P Natl Acad Sci USA 96, 11317-11322.
Goldberg, J.L. (2003). How does an axon grow? Gene Dev 17, 941-958.
Horner, P.J., and Gage, F.H. (2000). Regenerating the damaged central nervous system. Nature 407, 963-970.
Huang, Z.J., Di Cristo, G., and Ango, F. (2007). Development of GABA innervation in the cerebral and cerebellar cortices. Nature Reviews Neuroscience 8, 673-686.
Jinno, S. (2009). Structural organization of long-range GABAergic projection system of the hippocampus. Frontiers in neuroanatomy 3, 13.
Klausberger, T., and Somogyi, P. (2008). Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science 321, 53-57.
Krook-Magnuson, E., Varga, C., Lee, S.H., and Soltesz, I. (2012). New dimensions of interneuronal specialization unmasked by principal cell heterogeneity. Trends in neurosciences 35, 175-184.
Konishi, Y., Stegmuller, J., Matsuda, T., Bonni, S., and Bonni, A. (2004). Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science 303, 1026-1030.
Lawrence, J.J., and McBain, C.J. (2003). Interneuron diversity series: containing the detonation--feedforward inhibition in the CA3 hippocampus. Trends in neurosciences 26, 631-640.
Maccaferri, G., and Lacaille, J.C. (2003). Interneuron Diversity series: Hippocampal interneuron classifications--making things as simple as possible, not simpler. Trends in neurosciences 26, 564-571.
Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., and Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nature reviews Neuroscience 5, 793-807.
Matyas, F., Freund, T.F., and Gulyas, A.I. (2004). Immunocytochemically defined interneuron populations in the hippocampus of mouse strains used in transgenic technology. Hippocampus 14, 460-481.
Mueller, B.K. (1999). Growth cone guidance: first steps towards a deeper understanding. Annual review of neuroscience 22, 351-388.
Nomura, T., Fukuda, T., Aika, Y., Heizmann, C.W., Emson, P.C., Kobayashi, T., and Kosaka, T. (1997). Laminar distribution of non-principal neurons in the rat hippocampus, with special reference to their compositional difference among layers. Brain Res 764, 197-204.
Reh, T., and Kalil, K. (1982). Functional role of regrowing pyramidal tract fibers. The Journal of comparative neurology 211, 276-283.
Sann, S. B. (2006). "Growth cone stop signals: inviting to stay or sending away?" J Neurosci 26(35): 8879-8880.
Schmidt, A., and Hall, M.N. (1998). Signaling to the actin cytoskeleton. Annual review of cell and developmental biology 14, 305-338.
Shapiro, L.A., and Ribak, C.E. (2005). Integration of newly born dentate granule cells into adult brains: hypotheses based on normal and epileptic rodents. Brain Res Rev 48, 43-56.
Slomianka, L., Amrein, I., Knuesel, I., Sorensen, J.C., and Wolfer, D.P. (2011). Hippocampal pyramidal cells: the reemergence of cortical lamination. Brain structure & function 216, 301-317.
Stegmüller, J., Konishi, Y., Huynh, M. A., Yuan, Z., DiBacco, S., and Bonni, A. (2006). Cell-intrinsic regulation of axonal morphogenesis by the Cdh1-APC target SnoN. Neuron. 50, 389-400.
Tan, M.M., Harvey, A.R., and So, K.F. (1990). Regeneration of retinal axons in grafts of peripheral and central nervous tissue in the adult rat. Neuroscience letters 117, 14-19.
Tiveron, M.C., Rossel, M., Moepps, B., Zhang, Y.L., Seidenfaden, R., Favor, J., Konig, N., and Cremer, H. (2006). Molecular interaction between projection neuron precursors and invading interneurons via stromal-derived factor 1 (CXCL12)/CXCR4 signaling in the cortical subventricular zone/intermediate zone. Journal of Neuroscience 26, 13273-13278.
Tricoire, L., Pelkey, K.A., Erkkila, B.E., Jeffries, B.W., Yuan, X., and McBain, C.J. (2011). A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity. The Journal of neuroscience : the official journal of the Society for Neuroscience 31, 10948-10970.
Wu, H.I., Cheng, G.H., Wong, Y.Y., Lin, C.M., Fang, W., Chow, W.Y., and Chang, Y.C. (2010). A lab-on-a-chip platform for studying the subcellular functional proteome of neuronal axons. Lab on a chip 10, 647-653.
Yasaka, T., Tiong, S.Y., Hughes, D.I., Riddell, J.S., and Todd, A.J. (2010). Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain 151, 475-488.
Yiu, G., and He, Z. (2006). Glial inhibition of CNS axon regeneration. Nature reviews Neuroscience 7, 617-627.
Zhou, F.Q., and Snider, W.D. (2006). Intracellular control of developmental and regenerative axon growth. Philosophical transactions of the Royal Society of London Series B, Biological sciences 361, 1575-1592.