研究生: |
塔達 Swarup Datta |
---|---|
論文名稱: |
使用過渡金屬錯合物開發新型的有機反應 New Organic Transformations Using Transition Metal Complex |
指導教授: |
劉瑞雄
Rai-Shung Liu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 404 |
中文關鍵詞: | 釕與鉬金屬中間體反應 |
外文關鍵詞: | Ruthenium and Molebdenum mediated reactions |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分為四個章節,主要是利用過渡金屬銠和鉬催化或促進有機反應。
第一章主要是探討碳-碳參鍵斷裂的反應,過去關於碳-碳參鍵斷裂的文獻中均需加入有機促進劑的使用,在此我們以TpRuPPh3(CH3CN)2PF6為催化劑,提供一個新的方法,可以在不加任何有機促進劑的情況下,可快速催化末端炔醇類化合物進行碳-碳參鍵的斷裂,產生了烯類化合物及一氧化碳,比起文獻上的報導,我們減少了有機促進劑的使用以符合綠色化學的原則,並且也縮短了反應時間並且。而我們也利用同位素標定實驗的研究,已提出一套完整反應機構來解釋碳-碳參鍵斷裂的反應機制。
第二章主要是探討研究釕金屬錯合物 TpRuPPh3(CH3CN)2PF6 催化丙炔醇進行環化反應,在第一章中我們觀察到延伸一個碳鏈的炔醇化合物中,且在苯環對位有給電子基時,會進行不同於第一章的反應。以TpRuPPh3(CH3CN)2PF6和Zn(OTf)2為催化劑,則可得到環化的四氫萘衍生物。
第三章主要是探討研究鉬金屬錯合物 Mo(CO)3(CHCN)3 促進烯炔和丙二烯類化合物進行環化加成反應,而得到雙烯酮類。此反應產物乃合成具有生物活性的天然物之前驅物;我們提供一種乾淨且便利的方法去合成這一類的化合物。
第四章主要是探討利用釕金屬錯合物 TpRuPPh3(CH3CN)2PF6 催化烯炔類化合物進行環化反應,而形成環戊二烯類衍生物。。此反應的機構經由重氫取代實驗證明包含經由釕金屬亞乙烯基中間物的 [1,5]-sigmatropic 氫轉移。
The thesis discusses new ruthenium and molebdenum-mediated organic transformations. For convenience and better understanding, the thesis is divided into four chapters.
The first chapter deals with carbon-carbon triple bond cleavage. All previous reports involving catalytic cleavage of alkyne require additional promoters such as 2-aminopyridine or 2-aminophenol. In this chapter we have described a new pathway for the cleavage of alkyne in the absence of organic promoters. We have found that ethynyl alcohol in presence of 10 mol % TpRu(PPh3)(CH3CN)2PF6 and 20 mol% LiOTf in toluene at 100 oC produces alkene and carbon monoxide. Isotope labeling experiment shows that the reaction proceeds via ruthenium-allenylidene intermediate.
The second chapter deals with cyclization of propargylic alcohols. During our investigation on the ruthenium-catalyzed cleavage of triple bond, we observed that increase of carbon chain by one unit in the propargylic substrate and introducing electron donating substituent at the proper position of benzene ring gives monoruthenium complex-catalyzed cyclization in presence of catalytic amount of Lewis acid. Treatment of 6-aryl hex-1- yn-3-ols with 10 mol % of TpRu(PPh3)(CH3CN)2PF6 in presence of catalylitic amount of Zn(OTf)2 (20 mol %) at 100 oC in toluene afforded 1-ethynyl-1,2,3,4-tetrahydro-napthalene derivatives with alkyne functionality.
In chapter 3, we describe molebdenum-mediated cyclocarbonylation of 1-ethynyl-2 allenylbenzenes to 1H-cyclopenta[a]inden-2-one derivatives at ambient condition. 1,2,3,3a,8,8a Hexahydrocyclopenta[a]indene is often encountered in naturally occurring polyphenol species such as pallidol and gneafricanin which shows interesting biological activities. Although reaction of 1-ethynyl-2 allenylbenzenes with metal specious are expected to give competitive Myers–Saito or Schmittel cyclization which also occur under ambient conditions, we report a clean and efficient Pouson-Khand type cyclocarbonylation of 1-ethynyl-2-allenylbenzene derivatives with stoichiometric amount of Mo(CO)3(CH3CN)3 in dichloromethane at 25 oC.
The final and fourth chapter establishes ruthenium-catalyzed cycloisomerization of cis-3-en-1-ynes to cyclopentadiene and related derivatives through a 1,5-sigmatropic hydrogen shift of ruthenium-vinylidene intermediates. [1,5] sigmatropic hydrogen shift of cis-3-ene-1-ynes proceeds sluggishly even at elevated temperatures. One possible approach is to mimic the thermal rearrangement of cis-1-allen-4-enes using a suitable metal species to generate metal-vinylidene intermediates. We observed that C(3) and C(5) substituted 1-ethynyl-3-ols in presence of 10 mol % TpRuPPh3(CH3CN)2 in benzene at 80 oC produced cyclopentadiene derivatives which are appealing building blocks to construct the skeletons of complex molecules via the formation of intermediate cis-enyne. The role of the ruthenium catalyst is twofold in the reaction: (1) dehydration of 1-ethynyl-3-ol and (2) cyclization of cis-enyne via 1,5-sigmatropic hydrogen shift.
Chapter 1
(1) (a) Murakami, M.; Ito, Y. In Activation of Unreactive Bonds and Organic Synthesis; Murai, S., Ed.; Springer: Berlin, 1999; p 97. (b) Rybchinski, B.; Milstein, D. Angew. Chem., Int. Ed. 1999, 38, 870. (c) Jennings, P. W.; Johnson, L. L. Chem. Rev. 1994, 94, 2241.
(2) (a) Transition Metals in the Synthesis of Complex Organic Molecules; Hegedus, L. S., Ed.; University Science Books: Mill Valley, CA, 1994; p 237. (b) Hegedus, L. S. In Comprehensive Organometallic Chemistry II: Transition Metal Organometallics in Organic Synthesis; Abel, E. W., Stone, F. G., Wilkenson, G., Eds.; Pergamon: London, 1995; Vol. 12.
(3) (a) Moriarty, R. M.; Penmasta, R.; Awasthi, A. K.; Prakash, I. J. Org. Chem. 1988, 53, 6124. (b) Sawaki, Y.; Inoue, H.; Ogata, Y. Bull. Chem. Soc. Jpn. 1983, 56, 1133.
(4) (a) Chamberlin, R. L. M.; Rosenfeld, D. C.; Wolczanski, P. T.; Lobkovsky, E. B. Organometallics 2002, 21, 2724. (b) Figueroa, J. S.; Cummins, C. C. J. Am. Chem. Soc. 2003, 125, 4020.
(5) O’Connor, J. M.; Pu, L. J. Am. Chem. Soc. 1990, 112, 9013.
(6) Bianchini, C.; Casares, J. A.; Peruzzini, M.; Romerosa, A.; Zanobini, F. J. Am. Chem. Soc. 1996, 118, 4585.
(7) Hayashi, N.; Ho, D. M.; Pascal, R. A., Jr. Tetrahedron Lett. 2000, 41, 4261.
(8) N. Kaneta, T. Hirai, M. Mori, Chem. Lett. 1995, 627.
(9) Furstner, A.; Seidel, G. Angew.Chem. Int. Ed. 1998, 37, 1734.
(10) S. A. Krouse, R. R. Schrock, Macromolecules 1989, 22, 2569; Macromolecules 1987, 20, 903
(11) Cummins, C. C. Chem. Commun. 1998, 1777. (b) Laplaza, C. E.; Cummins, C. C. Science 1995, 268, 861. (c) Laplaza, C. E.; Johnson, A. R.; Cummins, C. C. J. Am. Chem. Soc. 1996, 118, 709. (d) Laplaza, C. E.; Johnson, M. J. A.; Peters, J. C.; Odom, A. L.; Kim, E.; Cummins, C. C.; George, G. N.; Pickering, I. J. Am. Chem. Soc. 1996, 118, 8623.
(12) Preparation: Laplaza, C. E.; Odom, A. L.; Davis, W. M.; Cummins, C. C. J. Am. Chem. Soc. 1995, 117, 4999.
(13) Furstner, A.; Mathes, C.; Lehmann, C. W. J. Am. Chem. Soc. 1999, 121, 9453.
(14) Lee, D.-Y.; Hong, B.-S.; Choi, E.-G.; Lee, H.; Jun, C.-H. J. Am. Chem. Soc. 2003, 125, 6372.
(15) Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 6646.
(16) (a) Knaup, W.; Werner, H. J. Organomet. Chem. 1991, 411, 471. (b) Chin, C. S.; Chong, D.; Maeng, B.; Ryu, J.; Kim, H.; Kim, M.; Lee, H. Organometallics 2002, 21, 1739. (c) Davies, S.; McNally, J. P.; Smallridge, A. J. Adv. Organomet. Chem. 1990, 30, 30. (d) Werner, H.; Lass, R. W.; Gevert, O.; Wolf, J. Organometallics 1997, 16, 6, 4077. (e) O’Connor, J. M.; Hiibner, K. J. Chem. Soc., Chem. Commun. 1995, 1209.
(17) Chan, W.-C.; Lau, C.-P.; Chen, Y.-Z.; Fang, Y.-Q.; Ng, S.-M.; Jia, G. Organometallics 1997, 16, 34.
(18) (a) Bruneau, C.; Dixneuf, P. Acc. Chem. Res. 1999, 32, 311. (b) Bustelo, E.; Carbo, J. J.; Lledos, A.; Mereiter, K.; Puerta, M. C.; Valerga, P. J. Am. Chem. Soc. 2003, 125, 3311.
(19) (a) Trost, B. M.; Flygare, J. A. J. Am. Chem. Soc. 1992, 114, 5476. (b) Trost, B. M.; Flygare, J. A. Tetrahedron Lett. 1994, 35, 4059. (c) Nishibayashi, Y.; Wakiji, I.; Hidai, M. J. Am. Chem. Soc. 2000, 122, 11019. (d) Yeh, K.-L.; Lo, C.-Y.; Huang, H.-L.; Liu, R.-S. J. Am. Chem. Soc. 2002, 124, 6510. (e) Madhushaw, R. J.; Li, C.-L.; Shen, K.-H.; Hu, C.-C.; Liu, R.-S. J. Am. Chem. Soc. 2001, 123, 7427.
(20) Ruba, E.; Simanko, W.; Mauthner, K.; Soldouzi, K. M.; Slugovc, C.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics, 1999, 86, 3843.
Chapter 2
(1) (a) Werner, H. Chem. Commun. 1997, 903. (b) Touchard, D.; Dixneuf, P. H. Coord. Chem. Rev. 1998, 178-180, 409. (c) Bruce, M. I. Chem. Rev. 1998, 98, 2797. (d) Cadierno, V.; Gamasa, M. P.; Gimeno, J. Eur. J. Inorg. Chem. 2001, 571.
(2) (a) Olah, G. A.; Spear, R. J.; Westerman, P. W.; Denis, J.-M. J. Am. Chem. Soc. 1974, 96, 5855. (b) Prakash, G. K. S.; Krishnamurthy, V. V.; Olah, G. A.; Farnum, D. G. J. Am. Chem. Soc. 1985, 107, 3928. (c) Krishnamurthy, V. V.; Prakash, G. K. S.; Iyer, P. S.; Olah, G. A. J. Am. Chem. Soc. 1986, 108, 1575. (d) Olah, G. A.; Krishnamurthy, V. V.; Prakash, G. K. S. J. Org. Chem. 1990, 55, 6060.
(3) S. M. Lukyanov, A. V. Koblik, L. A. Muradyan, Russ. Chem. Rev. 1998, 67, 817
(4) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic Molecules; University Science Books: CA, 1999.
(5) (a) Posner, G. H. Org. React. 1975, 22, 253. (b) Normant, J. F. Pure Appl. Chem. 1978, 50, 709. (c) Jukes, A. E. Adu. Organomet. Chem. 1974, 12, 215.
(6) (a) Rona, P.; Crabbe, P. J. Am. Chem. Soc. 1968, 90, 4733. (b) Rona, P.; Crabbe, P. Ibid. 1969, 91, 3289. (c) Van Dijck, L. A.; Lankwerde, B. J.; Vermeer, J. G. C. M.; Weber, A. J. M. Recl. Trau. Chim. Pays-Bas. 1971, 90, 801. (d) Crabbe, P.; Carpie, H. J. Chem. Soc., Chem. Commun. 1972, 904. (e) Kalli, M.; Landor, P. D.; Landor, S. R. Ibid. 1972, 593. (e) Descoins, C.; Henrick, C. A.; Siddal, J. B. Tetrahedron Lett. 1972, 3777. (g) Kalli, M.; Landor, P. D.; Landor, S. R. J. Chem. Soc., Perkin Trans 1 1973, 1347. (h) Vermeer, P.; Meijer, J.; Brandsma, L. Recl. Trau. Chim. Pays-Bas. 1975, 94, 66. (i) Brinkmeyer, R. S.; Macdonald, T. L. J. Chem. Soc., Chem. Commun. 1978, 876.
(7) (a) Padmanavan, S.; Nicholas, K. M. Tetrahedron Lett. 1983, 24, 2239. (b) Nicholas, K. M. Acct. Chem. Res. 1987, 20, 207.
(8) Imada, Y.; Yuasa, M.; Nakamura, I.; Murahashi, S, -I. J. Org. Chem. 1994, 59, 2282.
(9) Bartels, A.; Mahrwald, R.; Quint, S. Tetrahedron Lett. 1999, 40, 5989.
(10) Nishibayashi, Y.; Wakiji, I.; Hidai, M. J. Am. Chem. Soc. 2000, 122, 11019.
(11) Nishibayashi, Y.; Wakiji, I.; Ishii, Y.; Uemura, S.; Hidai, M. J. Am. Chem. Soc. 2001, 123, 3393.
(12) Olah, G. A. Friedel-Crafts and Related Reactions; Interscience Publishers: New York, 1964.
(13) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 11846.
(14) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2003, 125, 6060.
(15) Nishibayashi, Y.; Imajima, H.; Onodera, G.; Hidai, M.; Uemura, S. Organometallics. 2004, 23, 26.
(16) Datta, S.; Chang, C.-L.; Yeh, K.-L.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 9294.
Chapter 3
(1) N. E. Schore, Chem. Rev., 1988, 88, 1081.
(2) Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E.; Foreman,M. I. J. Chem Soc.,Perkin Trans. 1973, 977.
(3) Krafft, M. E.; Scott, I. L.; Romero, R. H.; Feibelmann, S.; Van Pelt, C. E. J Am. Chem. Soc. 1993, 115, 7199.
(4) Schore, N. E.; Croudace, M. C. J. Org. Chem. 1981, 46, 5436.
(5) (a) Khand, I. U.; Pauson, P. L. J. Chem. Soc, Chem. Commun. 1974, 379. (c) Khand, I. U.; Pauson, P. L. J. Chem. Soc., Perkin Trans.1 1976, 30. (d) Habib, M. J. A. J. Chem. Res., Miniprint 1978, 4401. (e) Khand, I. U.; Pauson, P. L.; Habib, M. J. A. J. Chem. Res., Miniprint 1978, 4418. (f) Pauson, P. L. Tetrahedron 1985, 41, 5855.
(6) Smit, W. A.; Gybin, A. S.; Shashkov, A. S.; Struchkov, Y. T.; Kyz'mina, L. G.; Mikaelian, G. S.; Caple, R.; Swanson, E. D. Tetrahedron Lett. 1986, 27, 1241.
(7) Krafft, M. E. J. Am. Chem. Soc. 1988, 110, 968.
(8) Shambayati, S.; Crowe, W. E.; Schreiber, S. L. Tetrahedron Lett. 1990, 31, 5289.
(9) Jeong, N.; Chung, Y. K.; Lee, B. Y.; Lee S. H.; Yoo, S.-E. Synlett, 1991, 204.
(10) Sugihara, T.; Yamada, M.; Yamaguchi, M.; Nishizawa, M. Synlett 1999, 771.
(11) Negishi, E.; Holmes, S. J.; Tour, J. M.; Miller, J. A. J. Am. Chem. Soc. 1985, 107, 2568; Negishi, E.; Cederbaum, F. E.; Takahashi, T. Tetrahedron Lett. 1986, 27, 2829; Negishi, E.; Holmes, S. J.; Tour, J. M.; Miller, J. A.; Cederbaum, F. E.; Swanson, D. R.; Takahashi, T. J. Am. Chem. Soc. 1989, 111, 3336.
(12) Tamao, K.; Kobayashi, K.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 1286; Tamao, K.; Kobayashi, K.; Ito, Y. Synlett 1992, 539.
(13) Pages, L.; Llebaria, A.; Camps, F.; Molins, E.; Miravitlles, C.; Moreto, J.M. J. Am. Chem. Soc. 1992, 114, 10449.
(14) Pearson, A. J.; Dubbert, R. A. J. Chem. Soc., Chem. Commun. 1991, 202; Pearson, A. J.; Dubbert, R. A. Organometallics 1994, 13, 1656.
(15) Aumann, R.; Weidenhaupt, H. J. Chem. Ber. 1987, 120, 23.
(16) Mukai, C.; Uchiyama, M.; Hanaoka, M. J. Chem. Soc., Chem. Commun. 1992, 1014.
(17) Jeong, N.; Lee, S. J.; Lee, B. Y.; Chung, Y. K. Tetrahedron Lett. 1993, 34, 4027.
(18) Grossman, R. B.; Buchwald, S. L. J. Org. Chem. 1992, 57, 5803.
(19) Hoye, T. R.; Suriano, J. A.; Organometallics 1992, 11, 2044; Hoye, T. R.; Suriano, J. A. J. Am. Chem. Soc. 1993, 115, 1154.
(20) (a) Berk, S. C.; Grossman, R. B.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115, 4912. (b) Berk, S. C.; Grossman, R. B.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 8593. (c) Hicks, F. A.; Berk, S. C.; Buchwald, S. L. J. Org. Chem. 1996, 61, 2713.
(21) (a) Hicks, F. A.; Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 9450. (b) Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 11688. (c) Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 7026.
(22) Zhang, M.; Buchwald, S. L. J. Org. Chem. 1996, 61, 4498.
(23) Morimoto, T.; Chatani, N.; Fukumoto, Y.; Murai, S. J. Org. Chem. 1997, 62, 3762.
(24) Kondo, T.; Suzuki, N.; Okada, T.; Mitsudo, T. J. Am. Chem. Soc. 1997, 119, 6187.
(25) Koga, Y.; Kobayashi, T.; Narasaka, K. Chem. Lett. 1998, 249.
(26) Jeong, N.; Lee, S.; Sung, B. K. Organometallics 1998, 17, 3642.
(27) Rautenstrauch, V.; MeÂgard, P.; Conesa, J.; KuÈster, W. Angew. Chem., Int. Ed. Engl. 1990, 29, 1413.
(28) Jeong, N.; Hwang, S. H.; Lee, Y.; Chung, Y. K. J. Am. Chem. Soc. 1994, 116, 3159.
(29) Lee, B. Y.; Chung, Y. K.; Jeong, N.; Lee, Y.; Hwang, S. H. J. Am. Chem. Soc. 1994, 116, 8793.
(30) Pagenkopf, B. L.; Livinghouse, T. J. Am. Chem. Soc. 1996, 118, 2285.
(31) Belanger, D. B.; O'Mahony, D. J. R.; Livinghouse, T. Tetrahedron Lett. 1998, 39, 7637.
(32) Belanger, D. B.; Livinghouse, T. Tetrahedron Lett. 1998, 39, 7641.
(33) Krafft, M. E.; Hirosawa, C.; Bonaga, L. V. R. Tetrahedron Lett. 1999, 40, 9171; Krafft, M. E.; Bonaga, L. V. R.; Hirosawa, C. Tetrahedron Lett. 1999, 40, 9177.
(34) Jeong, N.; Hwang, S. H.; Lee, Y. W.; Lim, J. S. J. Am. Chem. Soc. 1997, 119, 10549.
(35) Rajesh, T.; Periasamy, M. Tetrahedron Lett. 1999, 40, 817.
(36) Adrio, J.; Rivero, M. R.; Carretero, J. C. Org. Lett. 2005, 7, 431.
(37) Padwa, A.; Filipkowski, M. A.; Meske, M.; Murphree, S. S.; Watterson, S. H.; Ni, Z. J. Org. Chem. 1994, 59, 591.
(38) Schuster, H. F.; Coppola, G. M. In Allenes in Organic Synthesis; Wiley-Interscience: New York, 1983; pp 286-330.
(39) (a) Ahmar, M.; Locatelli, C.; Colombier, D.; Cazes, B. Tetrahedron Lett. 1997, 38, 5281. (b) Ahmar, M.; Chabanis, O.; Gauthier, J.; Cazes, B. Tetrahedron Lett. 1997, 38, 5277. (c) Ahmar, M.; Antras, F.; Cazes, B. Tetrahedron Lett. 1995, 36, 4417.
(40) Brummond, K. M.; Wan, H.; Kent, J. L. J. Org. Chem. 1998, 63, 6535
(41) Magnus, P.; Principe, L. M.; Slater, M. J. J. Org. Chem. 1987, 52, 1483-1486.
(42) Negishi, E. I.; Holmes, S. J.; Tour, J. M.; Miller, J. A. J. Am. Chem. Soc. 1985, 107, 2568.
(43) Knudson, M. J.; Schore, N. E. J. Org. Chem. 1984, 49, 5025.
(44) Brummond, K. M.; Lu, J.; Peterson, J. J. Am. Chem. Soc. 2000, 122, 4915.
(45) Brummond, K. M.; Chen, H.; Fisher, K. D.; Kerekes, A. D.; Rickards, B.; Sill, P. C.; Geib, S. J. Org. Lett. 2002, 4, 1931.
(46) (a) Nagata, R.; Yamanaka, H.; Okazaki, E.; Saito, I. Tetrahedron Lett. 1989, 30, 4995. (b) Nagata, R.; Yamanka, H.; Murahashi, E.; Saito, I. Tetrahedron Lett. 1990, 31, 2907. For a similar report applied to the study on DNA cleavage and antitumor activity, see: Nicolaou, K. C.; Maligres, P.; Shin, J.; de Leon, E.; Rideout, D. J. Am. Chem. Soc. 1990, 112, 7825.
(47) Myers, A. G.; Kuo, E. Y.; Finney, N. S. J. Am. Chem. Soc. 1989, 111, 8057.
(48) Wang, K. K.; Wang, Z.; Sattsangi, P. D. J. Org. Chem. 1996, 61, 1516. For a recent report, see: Suzuki, I.; Wakayama, M.; Shigenaga, A.; Nemoto, H.; Shibuya, M. Tetrahedron Lett. 2000, 41, 10019.
(49) Wang, K. K.; Zhang, H.-R.; Petersen, J. L. J. Org. Chem. 1999, 64, 1650. See also: Zhang, H.-R.; Wang, K. K. J. Org. Chem. 1999, 64, 7996.
(50) Krause, N.; Hohmann, M. Synlett 1996, 89.
(51) Feng, L.; Kumar, D.; Birney, D. M.; Kerwin, S. M. Org. Lett. 2004, 6, 2059.
(52) Grissom, J. W.; Huang, D. J. Org. Chem. 1994, 59, 5114.
(53) de Frutos, O.; Echavarren, A. M. Tetrahedron Lett. 1997, 38, 7941.
(54) (a) Schmittel, M.; Strittmatter, M.; Vollmann, K.; Kiau, S. Tetrahedron Lett. 1996, 37, 999. (b) Schmittel, M.; Maywald, M. Chem. Commun. 2001, 155.
(55) (a) Schmittel, M.; Strittmatter, M.; Kiau, S. Tetrahedron Lett. 1995, 36, 4975. (b) Schmittel, M.; Kian, S.; Siebert, T.; Strittmatter, M. Tetrahedron Lett. 1996, 37, 7691. (c) Schmittel, M.; Strittmatter, M. Tetrahedron 1998, 54, 13751.
(56) (a) Schmittel, M.; Maywald, M.; Strittmatter, M. Synlett 1997, 165. (b) Schmittel, M.; Keller, M.; Kiau, S.; Strittmatter, M. Chem.-Eur. J. 1997, 5, 807. (c) Schmittel, M.; Kiau, S. Liebigs Ann. Rec. 1997, 733.
(57) (a) Gillmann, T.; Hu¨ lsen, T.; Massa, W.; Wocadlo, S. Synlett 1995, 1257. (b) Shen, Q.; Hammond, G. B. J. Am. Chem. Soc. 2002, 124, 6534.
(58) (a) Vitrac, X.; Castagnino, C.; Waffo-Teguo, P.; Delaunay, J.-C.; Vercauteren, J.; Monti, J.-P.; Deffieux, G.; Merillon, J.-M. J. Agric. Food. Chem. 2001, 49, 5934; (b) Tanaka, T.; Ito, T.; Nakaya, K.-i.; Iinuma, M.; Takahashi, Y.; Naganawa, H.; Riswan, S. Heterocycles 2001, 55, 729; (c) Ohyama, M.; Tanaka, T.; Iinuma, M. Phytochemistry 1995, 38, 733; (d) Bala, A. E. A.; Kollmann, A.; Ducrot, P.-H.; Majira, A.; Kerhoas, L.; Leroux, P.; Delorme, L. R.; Einhorn, J. J. Phytopathology 2000, 148, 29.
(59) (a) Adesanya, S. A.; Nia, R.; Martin, M.-T.; Boukamcha, N.; Montagnac, A.; Pais, M. J. Nat. Prod. 1999, 62, 1694; (b) Baderschneider, B.; Winterhalter, P. J. Agric. Food. Chem. 2000, 48, 2681; (c) Khan, M. A.; Nabi, S. G.; Prakash, S.; Zaman, A. Phytochemistry 1986, 25, 1945; (d) Ohyama, M.; Tanaka, T.; Iinuma, M. Tetrahedron Lett. 1994, 35, 7817.
(60) Shore, N. E. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol. 5, p 1037.
(61) (a) Brummond, K. M.; Kerekes, A. D.; Wan, H. J. Org. Chem. 2002, 67, 5156; (b) Brummond, K. M.; Mitasev, B. Org. Lett. 2004, 6, 2245.
(62) (a) Brummond, K. M.; Gao, D. Org. Lett. 2003, 5, 3491; (b) Gupta, A. K.; Park, D. I.; Oh, C. H. Tetrahedron Lett. 2005, 46, 4171.
(63) Mo(CO)5THF was prepared by irradiation of pre-evacuated Mo(CO)6 in THF with mercury lamp at 30 oC for 12 h. See Maeyama, K.; Iwasawa, N. J. Org. Chem. 1999, 64, 1344.
(64) The preparation of Mo(CO)4(CH3CN)2 and Mo(CO)3(CH3CN)3 was obtained by heating Mo(CO)6 with CH3CN at 80 oC for 10 h and 24 h, respectively. See Al- Kathumi, K. M.; Kane-Maguire, A. P. J. Inorg. Nucl. Chem. 1972, 34, 3759.
Chapter 4
(1) Woodward, R. B.; Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1969, 8, 781.
(2) Woodward, R. B.; Hoffmann, R. J. Am. Chem. Soc. 1965, 87, 2511.
(3) H. E. Zimmerman, Acc. Chem. Res. 1971, 4, 272. and references cited therein.
(4) (a) M. J. S. Dewar, Angew. Chem. Int. Ed. Engl. 1971, 10, 761. (b) M. J. S. Dewar, "The Molecular Orbital Theory of Organic Chemistry", McGraw-Hill, New York. N.Y., 1969, pp 325-331.
(5) Dehnhardt, C.; McDonald, M.; Lee, S.; Floss, H. G.; Mulzer, J. J. Am. Chem. Soc. 1999, 121, 10848.
(6) L. Skattebol, Tetrahedron. 1969, 25, 4933.
(7) H. M. Frey and R. J. Ellis, J. Chem. SOC. 1965, 4770.
(8) H. Heimgartner, J. Zsindely, H.-J. Hansen, and H. Schmid, Helv. Chim. Acta. 1973, 56, 2924.
(9) (a) W. Roth, Tetrahedron Lett. 1964, 1009 (b) J. A. Berson and G. G. Aspelin, Tetrahedron. 1964, 20, 2697. and references therein.
(10) (a) A. P. ter Borg, H. Kloosterziel. and N. van Meurs, Recl. Trav. Chim. Pays-Bas. 1963, 82, 717. (b) A. P. ter Borg and H. Kloosterziel, Red. Trav. Chim. Pays-Bas. 1963, 82, 741. (c) A. P. ter Borg and H. Kloosterziel, Red. Trav. Chim. Pays-Bas. 1965, 84, 245. (d) A. P. ter Borg, E. Razenberg, and H. Kloosterziel, Red. Trav. Chim. Pays-Bas. 1965, 84, 1230. (e) A. P. ter Borg, H. Kloosterziel, and Y. L. Westphal, Red. Trav. Chlm. Pays-Bas. 1967, 86, 474.
(11) Pomerantz, M.; Ross, A. S.; Gruber, G. W. J. Am. Chem. Soc. 1972, 94, 1403.
(12) D. S. Glass, R. S. Boikess, and S. Winstein, Tetrahedron Lett. 1966, 999.
(13) Loncharich, R. J.; Houk, K. N. J. Am. Chem. Soc. 1988, 110, 2089.
(14) Lin, Y.-L.; Turos, E. J. Am. Chem. Soc. 1999, 121, 856.
(15) Chandraratna, R. A. S.; Bayerque, A. L.; Okamura, W. A. J. Am. Chem. Soc. 1983, 105, 3588.
(16) (a) Okamura, W. H.; Aurrecoechea, J. M.; Gibbs, R. A.; Norman, A. W. J. Org. Chem. 1989, 54, 4072. (b) Chandraratna, R. A. S.; Bayerque, A. L.; Okamura, W. A. J. Am. Chem. Soc. 1983, 105, 3588. (c) Wu, K.-M.; Midland, M. M.; Okamura, W. H. J. Org. Chem. 1990, 55, 4381.
(17) (a) Robin, M. J.; Guo, Z. O.; Samano, M. C.; Wnuk, S. F. J. Am. Chem. Soc. 1999, 121, 1425. (b) Alabugin, I. V.; Manoharan, M.; Breiner, B.; Lewis, F. D. J. Am. Chem. Soc. 2003, 125, 9329 and references therein. (c) Kless, A.; Nendel, M.; Willsey, S.; Houk, K. N. J. Am. Chem. Soc. 1999, 121, 4524. (d) Loncharich, R. J.; Houk, K. N. J. Am. Chem. Soc. 1988, 110, 2089. (e) Hess, B. A., Jr.; Baldwin, J. E. J. Org. Chem. 2002, 67, 6025. (f) Replogle, K. S.; Carpenter, B. K. J. Am. Chem. Soc. 1984, 106, 5751.
(18) (a) Hudlicky, T.; Reed, J. W. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, Part 8.1, p 899. (b) Parziale, P. A.; Berson, J. A. J. Am. Chem. Soc. 1990, 112, 1650.
(19) (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Bruneau, C.; Dixneuf, P. Acc. Chem. Res. 1999, 32, 311. (c) Bruneau, C. Top. Organomet. Chem. 2004, 11, 125.
(20) (a) Winterfieldt, E. Chem. ReV. 1993, 93, 827. (b) Corey, E. J.; Cheng X.-M. The Logic of Chemical Synthesis; Wiley: New York, 1989; Chapter 7, p 249.
(21) (a) Walters, M. A.; Arcand, H. R. J. Org. Chem. 1996, 61, 1478. (b) Leach, A. G.; Goldstein, E.; Houk, K. N. J. Am. Chem. Soc. 2003, 125, 8330.
(22) Rodriguez, A. L.; Bunlaksananusorn, T.; Knochel, P. Org. Lett. 2002, 2, 3285.
(23) For formation of metal-vinylidene intermediates using this catalyst, see: Lian, J.-J.; Odedra, A.; Wu, C.-J.; Liu, R.-S. J. Am. Chem. Soc. 2005, 127, 4186 and our related work cited therein.
(24) (a) Maier, G. Angew. Chem., Int. Ed. Engl. 1967, 6, 402. (b) Tessier, P. L.; Nguyen, N.; Clay, M. D.; Fallis, A. G. Org. Lett. 2005, 7, 767. (c) Rautenstrauch, V. J. Org. Chem. 1984, 49, 950.
(25) For metal-catalyzed reactions of 3-en-1-ynes, see (a) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901. (b) Nieto-Oberhuber, C.; Lopez, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178. (c) Saito, S.; Ohmori, O.; Yamamoto, Y. Org. Lett. 2000, 2, 3853.