簡易檢索 / 詳目顯示

研究生: 詹智淵
Chan, Chih-Yuan
論文名稱: 「β-酮酸酯」之「矽導引羅氏第一型 反應」及其應用
Silicon-Induced Norrish Type I Cleavage of β-Ketoesters with Applicability
指導教授: 胡紀如
口試委員: 蔡淑貞
張家靖
許銘華
胡紀如
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 83
中文關鍵詞: 矽化學羅氏反應
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 羅氏教授於1930年代發表酮類化合物照光進行「第一型」與「第二型」反應,羅氏反應被廣泛的研究,本實驗室發表之文獻中提到利用 β 位置的「三甲基矽基」控制環己酮照光「第一型」斷裂位置, α 位置具有烷基如「第三丁基」,照光進行「第一型」與「第二型」反應。
    本人合成ethyl 2-(trimethylsilyl)methyl-3-oxobutanoate (6) (CH3(C=O)CH(CH2Si(CH3)3)(C=O)OCH2CH3)及其衍生物ethyl 5-(benzyloxy)-2-(trimethylsilyl)methyl-3-oxopentanoate (7)(PhCH2O
    CH2CH2(C=O)CH(CH2Si(CH3)3)(C=O)OCH2CH3), ethyl 5-hydroxy-2-
    (trimethylsilyl)methyl-3-oxopentanoate (8) (HOCH2CH2(C=O)CH
    (CH2Si(CH3)3)(C=O)OCH2CH3),「羥基矽基化合物」8 為合成「含矽聚乳酸甘醇酸」(Si-PLGA)之單體,將「羥基化合物」4、「矽基化合物」6、「芐氧基矽基化合物」7 和「羥基矽基化合物」8 照光探討其進行之「羅氏第一型反應」或「第二型反應」,使用NMR和GC–MS分析照光後分解之化合物片段,藉以驗證推論之羅氏反應機制。


    中文摘要 ............................................................................................. i 英文摘要 ............................................................................................ ii 謝誌 ................................................................................................... iii 目錄 ................................................................................................... iv 圖目錄 .............................................................................................. vii 表目錄 ................................................................................................ x 一、緒論 ............................................................................................ 1 二、結果 .......................................................................................... 16 2-1 合成已知化合物Ethyl 5-hydroxy-3-oxopentanoate (4) .. 16 2-2 合成已知化合物Ethyl 2-(trimethylsilyl)methyl- 3-oxobutanoate (6) ................................................ 17 2-3 合成新化合物Ethyl 5-benzyloxy-2-(trimethylsilyl)methyl- 3-oxopentanoate (7) .............................................. 17 2-4 合成新化合物Ethyl 5-hydroxy-2-(trimethylsilyl)methyl- 3-oxopentanoate (8) ............................................... 19 2-5 對「矽基化合物」6 進行照射紫外光,研究其斷裂反應 及產物分析 .......................................................... 21 2-6 對「芐氧基矽基化合物」7 進行照射紫外光,研究其斷 裂反應及產物分析 .............................................. 30 2-7 對「羥基化合物」4 進行照射紫外光,研究其斷裂反應 及產物分析 .......................................................... 36 2-8 對「羥基矽基化合物」8 進行照射紫外光,研究其斷裂反應 及產物分析 .......................................................... 43 三、討論 ........................................................................................... 50 3-1 「矽基化合物」6 照光反應生成「雙矽基酯基化合物」 10 反應機制探討 ............................................ 50 3-2 「羥基化合物」4 與「羥基矽基化合物」8 反應 機制探討 ............................................................ 51 3-3 「苄氧基矽基化合物」7 反應機制探討 ..................... 53 3-4 「矽基化合物」6、「苄氧基矽基化合物」7及「羥基 矽基化合物」8 照光後生成「雙矽基酯基化合物」 10之探討 ...................................................................... 54 3-5 環狀單體合成討論 …..................................................... 56 四、結論 ........................................................................................... 60 五、實驗部分 ................................................................................... 61 5-1 Ethyl 2-(trimethylsilyl)methyl-3-oxobutanoate (6) ........ 62 5-2 Ethyl 5-benzyloxy-2-(trimethylsilyl)methyl- 3-oxopentanoate (7) ........................................................ 63 5-3 Ethyl 5-hydroxy-2-(trimethylsilyl)methyl- 3-oxopentanoate (8) .................................................. 64 5-4 Ethyl 3-(trimethylsilyl)propanoate (9) ............................ 65 5-5 Standard Precedure for the Photolysis of Ethyl 5-hydroxy- 3-oxopentanoante (4) .............................................. 65 5-6 Photolysis of ethyl 2-(Trimethylsilyl)methyl-3- oxobutanoate (6) ........................................................ 66 5-7 Photolysis of ethyl 5-Benzyloxy-2-(trimethylsilyl)methyl- 3-oxopentanoate (7) .................................................. 67 5-8 Photolysis of ethyl 5-Hydroxy-2-(trimethylsilyl)methyl-3- oxopentanoate (8) ...................................................... 67 六、參考文獻 ................................................................................... 68 七、圖譜 ........................................................................................... 75

    (1) National Skin Centre. Dedicated to Excellence in Dermatology.
    http://www.nsc.gov.sg/
    (2) U.S. Food and Drug Administration http://www.fda.gov/Radiation-EmittingProducts/RadiationEmittingProductsandProcedures/Tanning/ucm116425.htm
    (3) Vreman, H. J.; Wong, R. J.; Stevenson, D. K. Phototherapy: current methods and future directions. Semin. Perinatol. 2004, 28, 326–333.
    (4) Tan, K.L.; Comparison of the efficacy of fiberoptic and conventional phototherapy for neonatal hyperbilirubinemia. J. Pediatr. 1994, 125, 607–612
    (5) Alfano, R. R.; Ho, P. P.; Chiou, A. Optical sensing, imaging, and manipulation for biological and biomedical applications.; Society of Photo Optical: USA, 2000.
    (6) Miley, G.; Christensen, J. A. Ultraviolet blood irradiation therapy: Further studies in acute infections. Am. J. Surg. 1947, 73, 486–493.
    (7) Perez, T. Spinal needle light guide apparatus and method of delivery. U. S. Patent US 2011/0015575 A1
    (8) http://en.wikipedia.org/wiki/Blood_irradiation_therapy
    (9) Leong, K. W.; Langer, R. Polymeric controlled drug delivery. Adv. Drug Deliv. Rev. 1987, 1, 199–233.
    (10) Beck, P.; Kreuter, J.; Fichtner, I. Influence of polybutylcyanoacrylate nanoparticles and liposomes on the efficacy and toxicity of the anticancer drug mitoxantrone in murine tumour models. J. Microencapsul., 1993, 10, 101–114
    (11) Colombo, P. Swelling-controlled release in hydrogel matrices for oral route. Adv. Drug Deliv. Rev. 1993, 11, 37–57.
    (12) Bangham, A. D.; Horne, R. W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol. 1964, 8, 660–668.
    (13) McMahon, H. T.; Gallop, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodeling. Nature 2005, 438, 590–596.
    (14) Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005, 4, 145–160.
    (15) Jain, R. A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000, 21, 2475–2490.
    (16) Bangham, A. D.; Standish, M. M.; Watkins, J. C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965, 13, 238–252.
    (17) Langer, R.; Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 1976, 263, 797–800.
    (18) Yatvin, M. B.; Kreutz, W.; Horwitz, B. A.; Shinitzky, M. pH-Sensitive liposomes: possible clinical implications. Science 1980, 210, 1253–1255.
    (19) Leserman, L. D.; Barbet, J.; Kourilsky, F.; Weinstein, J. N. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature 1980, 288, 602–604.
    (20) Heath, T. D.; Fraley, R. T.; Papahdjopoulos, D. Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab')2 to vesicle surface. Science 1980, 210, 539–541.
    (21) Allen, T. M.; Chonn, A. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett. 1987, 223, 42–46.
    (22) Klibanov, A. L.; Maruyama, K.; Torchilin, V. P.; Huang, L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990, 268, 235–237.
    (23) Gref, R.; Minamitake, Y.; Peracchia, M. T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science 1994, 263, 1600–1603.
    (24) Farokhzad, O. C.; Langer, R. Impact of Nanotechnology on Drug Delivery. ACS nano 2009, 3, 16–20.
    (25) Dahan, A.; Hoffman, A. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J. Control. Release 2008, 129, 1–10.
    (26) Dhar, S.; Gu, F. X.; Langer, R.; Farokhzad, O. C.; Lippard, S. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA–PEG nanoparticles. J. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 17356–17361.
    (27) Prabaharan, M.; Grailer, J. J.; Pilla, S.; Steeber, D. A.; Gong, S. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 2009, 30, 6065–6075.
    (28) Curnis, F.; Sacchi, A.; Corti, A. Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J. Clin. Invest. 2002, 110, 475–482.
    (29) Kim, T. W.; Slowing, II; Chung, P. W.; Lin, V. S. Ordered mesoporous polymer−silica hybrid nanoparticles as vehicles for the intracellular controlled release of macromolecules. ACS nano 2011, 5, 360–366.
    (30) Khdair, A.; Handa, H.; Mao, G.; Panyam, J. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro. Eur. J. Pharm. Biopharm. 2009, 71, 214–222.
    (31) Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink, J. I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS nano 2008, 2, 889–896.
    (32) Lammers, T.; Subr, V.; Ulbrich, K.; Hennink, W. E.; Storm, G.; Kiessling, F. Polymeric nanomedicines for image-guided drug delivery and tumor-targeted combination therapy. Nano Today 2010, 5, 197–212.
    (33) Ferrari, M. Nat. Cancer nanotechnology: opportunities and challenges. Rev. Cancer 2005, 5, 161–171.
    (34) Owrutsky, J. C.; Baronavski, A. P. Ultrafast photodissociation studies of acetyl cyanide and acetic acid and unimolecular decomposition rates of the acetyl radical products. J. Chem. Phys. 1999, 111, 7329–7336.
    (35) Owrutsky, J. C.; Baronavski, A. P. Ultrafast photodissociation dynamics of the S1 and S2 states of acetone. J. Chem. Phys. 1999, 110, 11206–11213.
    (36) Horwitz, R. J.; Francisco, J. S.; Guest, J. A. Photofragmentation of Acetyl Cyanide at 193 nm. J. Phys, Chem. A 1997, 101, 1231–1237.
    (37) Hunnicutt, S. S.; Waits, L. D.; Guest, J. A. Energetic constraints in the 218-nm photolysis of acetic acid. J. Phys, Chem. 1989, 93, 5188–5195.
    (38) Carroll, F. A.; Strouse, G. F.; Hain, J. M. A visual manifestation of the Norrish Type I reaction: The cyclohexanone sunburn dosimeter. J. Chem. Educ. 1987, 64, 84–86.
    (39) Ihmels, H.; Scheffer, J. R. The Norrish type II reaction in the crystalline state: Toward a better understanding of the geometric requirements for γ-hydrogen atom abstraction. Tetrahedron 1999, 55, 885–907.
    (40) Hwu, J. R.; Gilbert, B. A.; Lin, L. C.; Liaw, B. R. Silicon-directed Norrish type I cleavage of β-trimethylsilyl cycloalkanones. J. Chem. Soc. Chem. Comm. 1990, 161–163.
    (41) Hwu, J. R.; Chen, B. L.; Lin, C. F.; Murr, B. L. Electronic and steric effects of silyl groups in silicon-directed Norrish type cleavages. J. Organomet. Chem. 2003, 686, 198–201.
    (42) Hwu, J. R.; Chen, B. L.; Shiao, S. S. Silicon-promoted carbon-carbon bond formation between ketones and allyl- or vinylsilanes catalyzed by manganese(IV) dioxide. J. Org. Chem. 1995, 60, 2448–2455.
    (43) Singh, S. P.; Kagan, J. The addition of alcohols to ethyl acetoacetate and a photochemical lactonization reaction. J. Chem. Soc. D Chem. Commun. 1969, 1211.
    (44) Narkov, P.; shishkova, L.; Zdravkova, Z. On the influence of UV-irradiation on the keto-enol equilibrium of ethylacetoacetate in solution. Tetrahedron lett. 1972, 39, 4017–4019.
    (45) Hasegawa, T.; Arata, Y.; Endoh, M. Type II photoreactions of α-alkyl β-oxoesters. Neighboring group effect on 1,4-biradical reactions and effective internal filter effect by the type II photoproduct. Tetrahedron, 1985, 41, 1667–1673.
    (46) Hasegawa, T. Solvent dependent photochemical reactions of 3-(2-Alkylphenyl)-2,2-dimethyl-3-oxopropanoates and their related compounds. J. Org. Chem. 1998, 63, 9013–9018.
    (47) Han, D.; Tong, X.; Zhao, Y. Fast photodegradable block copolymer micelles for burst release. Macromolecules 2011, 44, 437–439.
    (48) Yesilyurt, V.; Ramireddy, R.; Thayumanavan, S. Photoregulated release of noncovalent guests from dendritic amphiphilic nanocontainers. Angew. Chem. Int. Ed. 2011, 50, 3038–3042.
    (49) Yan, B.; Boyer, J. C.; Branda, N. R.; Zhao, Y. Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J. Am. Chem. Soc. 2011, 133, 19714–19717.
    (50) Tsuji, H.; Echizen, Y.; Nishimura, Y. Photodegradation of biodegradable polyesters: A comprehensive study on poly(l-lactide) and poly(ɛ-caprolactone). Polym. Degrad. Stabil. 2006, 91, 1128–1137.
    (51) Pamula, E.; Dobrzynski, P.; Bero, M.; Paluszkiewicz, C. Hydrolytic degradation of porous scaffolds for tissue engineering from terpolymer of l-lactide, ε-caprolactone and glycolide. J. Mol. Struct. 2005, 744, 557–562.
    (52) Chan-Seng, D.; Ranganathan, T.; Zhang, X. F.; Tang, Y. W.; Lin, Q.; Kleiner, L.; Emrick, T. Aliphatic polyester terpolymers for stent coating and drug elution: Effect of polymer composition on drug solubility and release. Drug. Deliv. 2009, 16, 304–311.
    (53) Taylor, E. C.; Lamattina, J. L. Synthesis of .gamma.-and .delta.-(1,3-dithianyl)
    .beta.-keto esters. J. Org. Chem. 1978, 43, 1200–1204.
    (54) Moyer, M. P.; Feldman, P. L.; Rapoport, H. Intramolecular N-H, 0-H, and S-H insertion reactions. Synthesis of heterocycles from a-diazo P-keto estersJ. Org. Chem. 1985, 50, 5223–5230.
    (55) Hoffmann, H. M. R.; Weber, A.; Giguere, R. J.2,2,4,4-Tetramethyl-3-
    methylenebicyclo[3.2.1]oct-6-ene. Chem. Ber. 1984, 117, 3325–3329.
    (56) Momose, T.; Toyooka, N.; Takeuchi, Y. A Laboratory Synthesis of 4-Hydroxy-2(5H)-furanone (β-Tetronic Acid). Heterocycles 1986, 24, 1429–1431.
    (57) Kotha, S.; Deb, A. C.; Kumar, R. V. Spiro-annulation of barbituric acid derivatives and its analogs by ring-closing metathesis reaction. Bioorg. Med. Chem. Lett. 2005, 15, 1039–1043.
    (58) Sraga, J.; Hrnciar, P. Methylatíon of 1,3-cyclopentanedione, 1,3-cyclohexanedione, and 1,3-cycloheptanedione with iodomethane in aprotic solvents in the absence and in the presence of 18-crown-6. Chem. Zvesti. 1981, 35, 119–126.
    (59) Tilley, L.J.; Shiner, V. J. γ-Silyl-stabilized tertiary ions? Solvolysis of 4-(trimethylsilyl)-2-chloro-2-methylbutane. J. Phys. Org. Chem. 1999, 12, 564–576.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE