研究生: |
張聿傑 Yu-Chieh Chang |
---|---|
論文名稱: |
藉由使用者查詢探討關連法則之間的相關性 Discovering Phenomena With User Queries |
指導教授: |
陳良弼
Arbee L. P. Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | MAH-tree 、FH-tree 、phenomena |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著市場資料的大量增加,從資料庫探戡出有用和有意義的關聯法則已經成為一個重要的研究課題。過去的做法著重在資料的屬性,在這篇論文裡,我們考慮交易本身的屬性來將市場資料組織成一棵具有多重屬性的階層樹,並導出其對應的關聯法則。再者,我們進一步的讓使用者經由這些屬性指定查詢條件,由推導出的關聯法則之間挖掘出有趣的相關性質。最後,我們進行實驗來評估並比較其效能。
With the growth of a large amount of marketing data, mining useful and meaningful association rules from databases has become an important research topic. Previous works have focused on the attributes of the marketing data to derive association rules. In this paper, we consider the attributes of transactions and allow users to specify queries against the attributes and then discover the interesting correlations among the derived association rules. For efficiency, we organize the marketing data as a multiple-attribute hierarchical tree by the attributes of transactions to derive the corresponding association rules. Finally, we make experiments on a synthetic database for performance evaluation and comparisons.
[AIS93] R. Agrawal, T. Imielinski and A. Swami, “Mining Association Rules between Sets of Items in Large Databases,” in Proc. ACM Int. Conf. Management of Data, pages 207-216, Washington, D.C., May 1993.
[AS94] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” in Proc. ACM Int. Conf. on Very Large Data Bases, pages 487-499, September 1994.
[Bay98] R. J. Bayardo, “Efficiently Mining Long Patterns from Databases,” in Proc. ACM Int. Conf. on Management of Data, 1998.
[BMUT97] S. Brin, R. Motwani, J. D. Ullman and S. Tsur, “Dynamic Itemset Counting and Implication Rules for Market Basket Data,” in Proc. ACM Int. Conf. Management of Data, pages 255-264, 1997.
[CCC98] Paul C. M. Chang, “Mining Association Rules by Sorts,” NTHU Master Thesis, 1998.
[CHY96] M. S. Chen, J. Han and P. S. Yu, “Data Mining: An Overview from A Database Perspective,” IEEE Trans. on Knowledge and Data Engineering, 5:926-938, 1996.
[GLWX01] G. Grahne, L. V. S. Laskshmanan, X. Wang and M. H. Xie, "On Dual Mining: From Patterns to Circumstances, and Back," Proceedings of IEEE Conference on Data Engineering, pages 195-204, 2001.
[HF95] J. Han and Y. Fu, “Discovery of Multiple-level Association Rules from Large Databases,” Proceedings of VLDB Conference, Zurich, 1995.
[HF99] J. Han and Y. Fu, “Mining Multiple-level Association Rules in Large Databases,” IEEE Transactions on Knowledge and Data Engineering, 1999.
[KS96] K. Sayood, “Introduction to Data Compression,” pages 15-17, 1996.
[P00] T. Palpanas, “Knowledge Discovery in Data Warehouse,” SIGMOD Record, 29(3), 2000.
[PCY95] J. S. Park, M. S. Chen and P. S. Yu, “An Effective Hash-based Algorithm for Mining Association Rules,” in Proc. ACM Int. Conf. Management of Data, pages 175-186, San Jose, May 1995.
[SA95] R. Srikant and R. Agrawal, “Mining Generalized Association Rules,” in Proceedings of VLDB Conference, Zurich, 1995.
[Tang98] J. Tang, “Using Incremental Pruning to Increase the Efficiency of Dynamic Itemset Counting for Mining Association Rules,” in Proc. ACM Int. Conf. Information and Knowledge Management, pages 273-280, 1998
[Toi96] H. Toivonen, “Sampling Large Databases for Association Rules,” in Proc. ACM Int. Conf. on Very Large Data Bases, pages 134-145, Bombay, September 1996.
[VSS98] V. S. Subrahmanian, “Principles of Multimedia Database Systems,” pages 83-88, 1998.
[W95] J. Widom, “Research Problems in Data Warehousing,” Proceedings of ACM Conference on Information and Knowledge Management, Baltimore, Maryland, 1995.
[WHH00] K. Wang, Y. He and J. Han, “Mining Frequent Itemsets Using Support Constraints,” Proc. 2000 Int. Conf. on Very Large Data Bases, 2000.
[WLC99] Q. S. Wang, “An Analysis of multi-dimension patterns of the user web page profiles”, NCU Master Thesis, 1999.
[YC95] S. J. Yen and A. L. P. Chen, “An Efficient Algorithm for Deriving Compact Rules from Databases,” in Proc. Int. Conf. on Database Systems for Advanced Applications, pages 364-371, 1995.
[YC96a] S. J. Yen and A. L. P. Chen, “The Analysis of Relationships in Databases for Rule Derivation,” Journal of Intelligent Information Systems, Vol.7, pages 1-24, 1996.
[YC96b] S. Y. Yen and A. L. P. Chen, “An Efficient Approach to Discovering Knowledge from Large Databases,” in Proc. IEEE/ACM Int. Conf. on Parallel and Distributed Information Systems, pages 8-18, 1996.
[YC97] S. J. Yen and A. L. P. Chen, “An Efficient Data Mining Technique for Discovering Interesting Association Rules,” in Eighth International Workshop on Database and Expert Systems Applications, pages 664-669, 1997.
[YC01] S. J. Yen and A. L. P. Chen, “A Graph-Based Approach for Discovering Various Types of Association Rules,” to appear in IEEE Trans. on Knowledge and Data Engineering.
[YLKCC99]C. L. Yip, K. K. Loo, B. Kau, D. W. Cheung and C. K. Cheng, “LGen--A Lattice-Based Candidate Set Generation Algorithm for I/O efficient Association Rule Mining,” in Third Pacific-Asia Conference, PAKDD-99, pages 54-63, 1999.
[Z97] Y. Zhou et al., “An Array-based Algorithm for Simultaneous Multidimensional Aggregates,” in Proceedings of the ACM SIGMOD Conference, 1997.