簡易檢索 / 詳目顯示

研究生: 張育瑄
Chang, Yu-Hsuan
論文名稱: 以光交聯PEG/PCL水膠混合氫氧基磷灰石及PRP建立三層結構支架應用於軟/硬骨組織修復
Establishment of a three-layer structure using PEG/PCL photocrosslinked hydrogel scaffold mixed with hydroxyapatite and PRP for cartilage and subchondral bone repair
指導教授: 朱一民
Chu, I-Ming
口試委員: 黃振煌
Huang, Chen-Huang
林世傑
Lin, Shih-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 88
中文關鍵詞: 光交聯水膠軟骨修復氫氧基磷灰石三層結構PRP
外文關鍵詞: Hydrogel, Cartilage repair, Three-layer structure, Hydroxyapatite, PRP
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 關節軟骨因缺乏神經纖維、血管及淋巴系統,自我修復及再生能力非常有限,而透過軟骨組織工程提供一暫時性支架,可以有效幫助其修復。水膠因含水率高有助於物質的代謝,且具有組織般的彈性,適合作為軟骨組織修復的支架,而作為組織工程的支架,必須具有良好的機械強度,避免植入體內後因無法承受外力而崩解,因此本實驗結合了高分子生物性材料及氫氧基磷灰石(Hydroxyapatite,HAP)形成複合材料,分別對軟、硬骨層做修復。HAP為一種天然磷灰石礦物,其化學性質及晶體結構和生物體的硬組織相似,具有良好的生物相容性、生物活性及骨傳導性,已廣泛應用於骨組織的修復。
    為配合動物實驗之模型,達到軟、硬骨層分別修復的效果,本實驗將利用PEG、PCL形成三團共聚物PCL-PEG-PCL(命名為PEC),並結合氫氧基磷灰石,設計出三層結構之材料:下層為HAP,對應硬骨層之修復;上層及中間層皆為PEC,上層對應軟骨層之修復,扮演細胞支架的角色,中間層則扮演幫助tidemark形成之角色,期望達到軟、硬骨層之間緊密結合但具有明顯區隔界線的目的。
    由表面結構分析、體外降解、機械性質、基因表現、趨化性實驗等結果,決定出上層及中間層之PEC濃度以及下層之HAP濃度。結果顯示,PEC12.5%結構最致密、降解最慢,且對MC3T3有最佳的基因表現結果;PEC10%則對chondrocytes有最佳的基因表現結果。另外,PEC能夠改善HAP過於硬脆的特性,而HAP能夠提升整體材料之機械強度,其中以10%HAP有最顯著的效果。由HAP對MC3T3之趨化性實驗可得知,MC3T3在5%及10% nano-HAP的環境下,細胞遷移量最大,代表nano-HAP對MC3T3的趨化性佳。綜合以上結果,在動物實驗的材料選擇上,下層會選用機械強度最高且細胞趨化性最佳之10%HAP。中間層因期望區隔出軟、硬骨層間的界線,會選用降解較慢、孔洞結構較緻密、機械強度最高且對MC3T3基因表現較佳的PEC12.5%。而上層則會選用降解稍快、孔洞結構較鬆散卻又不失機械強度,且對軟骨細胞有較佳基因表現的PEC10%。
    為了提高軟骨層的修復效率,並解決軟、硬骨層之修復速度不同的問題,本實驗結合了富含血小板之血漿(Platelet-Rich Plasma,PRP),活化的血小板可以釋放出許多生長因子及其他生物活性分子,能夠有效促進組織癒合及調節OA病理學上之異常炎症過程。透過上層PEC10%與PRP之結合,並測試出具有最佳機械強度之成膠方式與混合比例,在植入動物體內時釋放出TGF-β1、EGF、PDGF-AB等生長因子,可以有效幫助軟骨修復。進一步以動物實驗12週後發現,三層結構並結合PRP之設計可以成功達到軟硬骨層同時修復並具有明顯區隔界線的目的。


    Owing to the absence of nerve fiber, blood vessel and lymphatic system, articular cartilage cannot be repaired by itself like other tissue. Tissue engineering has been proposed for cartilage repair through a temporary scaffold. The cells can be encapsulated in the scaffold and gradually become tissue as the degradation of materials. Hydrogel is a suitable cartilage tissue engineering scaffold due to its high water content that can help nutrients transport. To withstand the external forces after implanting in the knee joint, the mechanical strength is important. Therefore, this experiment combines polymer biomaterials with hydroxyapatite (HAP) to form the composite materials which can repair the cartilage and osteochondral layer, respectively. HAP is a naturally occurring mineral form of calcium apatite whose chemical properties and crystal structure are similar to those of hard tissue in the living body. It has good biocompatibility, bioactivity and osteoconductivity, and is commonly used for bone repair.
    In order to match the animal experiment that can repair the cartilage and osteochondral layer respectively, this experiment combines triblock copolymer, PCL-PEG-PCL (named PEC), with HAP. According to the concept of multilayer, the three layers structure is designed. The lower layer is HAP, corresponding to the repair of the osteochondral layer. The upper layer and the middle layer are pure PEC. Chondrocytes are encapsulated in the upper layer which plays the role of scaffold, and the middle layer will be expected to help to form the tidemark that cartilage and osteochondral layers are tightly bonded but have distinct boundaries.
    PEC concentration of the upper and middle layers and the HAP concentration of the lower layer were determined by the results of in vitro degradation, mechanical properties and gene expression, etc. The results showed that the slowest degradation and the best gene expression for MC3T3 are PEC12.5% and PEC10% has the best gene expression for chondrocytes. In addition, PEC can improve the brittle characteristic of HAP, while HAP can enhance the mechanical strength of material. Among the three concentration of HAP, 10% HAP has the significant effect; moreover, 5% and 10% nano-HAP have better promoting chemotactic effects on MC3T3 in the chemotactic experiment. Based on the results, 10% HAP will be used in the lower layer. PEC12.5% will be used in the middle layer which has the most dense pore structure, the highest mechanical strength and the best gene expression of MC3T3. PEC10% will be used in the upper layer which has the better gene expression of chondrocytes and a certain level of mechanical strength.
    PRP, which means platelet-rich plasma, will release many growth factors and other bioactive molecules by activated platelets. PRP can effectively promote tissue healing and regulate abnormal inflammatory processes in OA pathology. In order to improve the efficiency of cartilage repair and solve the problem of different repair efficiency between cartilage and subchondral bone layers, this experiment combines upper layer with PRP. The best gel forming methods and mixing ratio between PEC10% and PRP would be tested. By releasing TGF-β1, EGF, PDGF-AB and the other growth factors in vivo can help cartilage repair effectively. After 12 weeks of animal testing, the design of three-layer structure combined with PRP can successfully repair the cartilage and osteochondral layers at the same time and have distinct boundaries.

    摘要 I Abstract IV 致謝 VI 目錄 VII 圖目錄 XI 表目錄 XIII 第一章 文獻回顧 1 1.1 光交聯水膠 1 1.1.1 光交聯水膠成膠機制 1 1.1.2 光交聯水膠特性與應用 2 1.2 細胞支架 3 1.3 氫氧基磷灰石 4 1.4 關節軟骨 6 1.4.1 關節軟骨結構 7 1.4.2 關節軟骨細胞與細胞外間質 8 1.4.3 關節軟骨組織工程 10 1.4.4 退化性關節炎osteoarthritis (OA)及其修復 12 1.5 Platelet-rich Plasma (PRP) 16 第二章 研究動機與目的 18 第三章 實驗藥品、儀器設備 20 3.1 實驗藥品 20 3.2 儀器設備 21 第四章 實驗步驟與方法 23 4.1 PCL-PEG-PCL-DA合成 23 4.1.1 PCL-PEG-PCL三團共聚物合成 23 4.1.2 PCL-PEG-PCL兩端烯基化反應 23 4.2 光交聯水膠製備 24 4.3 材料性質鑑定 24 4.4 含水率(water content)、膨潤率(swelling ratio) 25 4.5 材料快速降解測試 25 4.6 水膠之三層結構設計與方法 26 4.7 材料表面結構分析 26 4.8 機械性質測試 27 4.9 Platelet-Rich Plasma (PRP)製備與應用 27 4.9.1 PRP製備與凝膠 27 4.9.2 PEC與PRP混合製備 28 4.10 細胞分離及培養 28 4.10.1 小鼠成骨細胞(MC3T3) 28 4.10.2 人類關節軟骨細胞(Human Articular Chondrocytes, CH) 29 4.11 細胞包埋 29 4.12 細胞毒性測試 30 4.12.1 MTT assay 30 4.12.2 LIVE/DEAD螢光染色 31 4.13 細胞趨化性試驗 31 4.13.1 DAPI螢光染色 32 4.14 基因表現定量分析 32 4.14.1 引子基因序列[40-43] 32 4.14.2 RNA萃取與定量 33 4.14.3 RNA反轉錄cDNA 33 4.14.4 即時定量PCR(Quantitative Real-time PCR, qRT-PCR) 34 4.15 生長因子之釋放與定量 35 4.15.1 生長因子之釋放 35 4.15.2 生長因子之定量 35 4.16 動物實驗 36 第五章 實驗結果與討論 37 5.1 材料合成與鑑定 37 5.2 材料物理特性 39 5.3 材料表面結構分析 42 5.3.1 PEC及HAP之表面結構分析 42 5.3.2 PEC混合PRP之表面結構分析 44 5.4 材料機械性質 44 5.4.1 單層PEC與雙層PEC+HAP之機械性質 44 5.4.2 雙層結構之機械性質綜合比較 52 5.4.3 三層結構之機械性質 53 5.4.4 上層PEC混合PRP之機械性質 54 5.4.5 三層結構混合PRP之機械性質 55 5.4.6 綜合比較 55 5.5 PRP相關物性測試 57 5.5.1 PRP凝膠 57 5.5.2 PEC與PRP之成膠順序探討 58 5.6 生長因子之釋放及定量 60 5.7 細胞毒性測試 62 5.8 HAP濃度對MC3T3之影響 64 5.8.1 細胞毒性測試 64 5.8.2 基因表現 65 5.8.3 細胞趨化性試驗 68 5.9 單層水膠單獨培養MC3T3 69 5.9.1 基因表現 69 5.10 單層水膠單獨培養chondrocytes 73 5.10.1 基因表現 73 5.11 綜合比較 75 5.12 動物實驗 76 第六章 結論與未來展望 80 第七章 參考文獻 84

    1. Kopecek, J., Polymer chemistry: swell gels. Nature, 2002. 417(6887): p. 388-9, 391.
    2. Hoffman, A.S., Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 2012. 64: p. 18-23.
    3. Decker, C., Kinetic study and new applications of UV radiation curing. Macromolecular Rapid Communications, 2002. 23(18): p. 1067-1093.
    4. Nuttelman, C.R., S.M. Henry, and K.S. Anseth, Synthesis and characterization of photocrosslinkable, degradable poly(vinyl alcohol)-based tissue engineering scaffolds. Biomaterials, 2002. 23(17): p. 3617-3626.
    5. McGann, C.L., Dumm, R. E., Jurusik, A. K., Sidhu, I., Kiick, K. L., Thiol-ene Photocrosslinking of Cytocompatible Resilin-Like Polypeptide-PEG Hydrogels. Macromolecular Bioscience, 2016. 16(1): p. 129-138.
    6. Cruise, G.M., D.S. Scharp, and J.A. Hubbell, Characterization of permeability and network structure of interfacially photopolymerized poly(ethlene glycol) diacrylate hydrogels. Biomaterials, 1998: p. 1287-1294.
    7. Park, J.S., Woo, D. G., Sun, B. K., Chung, H. M., Im, S. J., Choi, Y. M., Park, K., Huh, K. M., Park, K. H., In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. Journal of Controlled Release, 2007. 124(1-2): p. 51-59.
    8. Hunziker, E.B., Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage, 2002. 10(6): p. 432-463.
    9. Nie, X.L. and D.A. Wang, Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells. Biomaterials Science, 2018. 6(11): p. 2798-2811.
    10. Taniyama, T., Masaoka, T., Yamada, T., Wei, X. T., Yasuda, H., Yoshii, T., Kozaka, Y., Takayama, T., Hirano, M., Okawa, A., Sotome, S., Repair of Osteochondral Defects in a Rabbit Model Using a Porous Hydroxyapatite Collagen Composite Impregnated With Bone Morphogenetic Protein-2. Artificial Organs, 2015. 39(6): p. 529-535.
    11. Su, C., Su, Y. L., Li, Z. Y., Haq, M. A., Zhou, Y., Wang, D. J., In situ synthesis of bilayered gradient poly(vinyl alcohol)/hydroxyapatite composite hydrogel by directional freezing-thawing and electrophoresis method. Materials Science & Engineering C-Materials for Biological Applications, 2017. 77: p. 76-83.
    12. Wada, S., Kitamura, N., Nonoyama, T., Kiyama, R., Kurokawa, T., Gong, J. P., Yasuda, K., Hydroxyapatite-coated double network hydrogel directly bondable to the bone: Biological and biomechanical evaluations of the bonding property in an osteochondral defect. Acta Biomaterialia, 2016. 44: p. 125-134.
    13. Khanarian, N.T., Haney, N. M., Burga, R. A., Lu, H. H., A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials, 2012. 33(21): p. 5247-5258.
    14. I-Ching Chen, D.-C.L., Ph.D., Fa-Jui Tan, Ph.D., Effect of hydroxyapatite contents and the concentration of EDC on the microstructural and biocompatibility of porous collagen/hydroxyapatite composite scaffold. 國立中興大學動物科學系, 2014.
    15. Buckwalter, J.A., H.J. Mankin, and A.J. Grodzinsky, Articular cartilage and osteoarthritis. Instr Course Lect, 2005. 54: p. 465-80.
    16. LIN, C.P., How Cartilage Damage Can Be Treated. Health Plus, 27.NOV.2018.
    17. Vega, S.L., M.Y. Kwon, and J.A. Burdick, RECENT ADVANCES IN HYDROGELS FOR CARTILAGE TISSUE ENGINEERING. European Cells & Materials, 2017. 33: p. 59-75.
    18. J. A. Buckwalter, V.C.M., and A. Ratcliffe, Restoration of Injured or Degenerated Articular Cartilage. J Am Acad Orthop Surg. , Jul 1994: p. 192-201.
    19. COX, D.L.N.M.M., 生物化學 碳水化合物與醣類生物學. 歐亞書局有限公司, 2012: p. 271.
    20. Yamaoka, H., Asato, H., Ogasawara, T., Nishizawa, S., Takahashi, T., Nakatsuka, T., Koshima, I., Nakamura, K., Kawaguchi, H., Chung, U. I., Takato, T., Hoshi, K., Cartilage tissue engineering chondrocytes embedded in using human auricular different hydrogel materials. Journal of Biomedical Materials Research Part A, 2006. 78A(1): p. 1-11.
    21. Ko, C.Y., Ku, K. L., Yang, S. R., Lin, T. Y., Peng, S., Peng, Y. S., Cheng, M. H., Chu, I. M., In vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL-PEG-PCL hydrogels enhances cartilage formation. Journal of Tissue Engineering and Regenerative Medicine, 2016. 10(10): p. E485-E496.
    22. Murphy, C.M., O'Brien, F. J., Little, D. G., Schindeler, A., CELL-SCAFFOLD INTERACTIONS IN THE BONE TISSUE ENGINEERING TRIAD. European Cells & Materials, 2013. 26: p. 120-132.
    23. 邱詩淵, 退化性關節炎. 台北榮民總醫院家庭醫學部衛生教育系列, 2007.
    24. Bobic, V., Consultant Orthopaedic Knee Surgeon. Orthopaedic Patient Information, 2010.
    25. 蘇景源, 膝退化性關節炎的手術治療方法. 高醫醫訊月刊, 1994.
    26. Chan, B., Cartilage Tissue Engineering. Mechanical Engineering. The University of Hong Kong. p. 6-8.
    27. Paterson, K.L., Nicholls, M., Bennell, K. L., Bates, D., Intra-articular injection of photo-activated platelet-rich plasma in patients with knee osteoarthritis: a double-blind, randomized controlled pilot study. Bmc Musculoskeletal Disorders, 2016. 17: p. 9.
    28. Xie, X.T., Wang, Y., Zhao, C. J., Guo, S. C., Liu, S., Jia, W. T., Tuan, R. S., Zhang, C. Q., Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials, 2012. 33(29): p. 7008-7018.
    29. 姜義彬, 方., 不同強度運動對自體富含血小板血漿中生長因子濃度之影響, in 國立台灣師範大學運動與休閒學院 體育學系 博士學位論文 2015/6.
    30. 李金龍, 鈣與臨床, in 飼料營養雜誌. 2005. p. 37~41.
    31. 蘇正堯, 血小板的新角色–組織修復及再生. <<科學發展>>, 2004/7. 379期: p. 48~51.
    32. Landesberg, R., M. Roy, and R.S. Glickman, Quantification of growth factor levels using a simplified method of platelet-rich plasma gel preparation. Journal of Oral and Maxillofacial Surgery, 2000. 58(3): p. 297-300.
    33. Everts, P.A.M., Mahoney, C. B., Hoffmann, Jjml, Schonberger, Jpam, Box, H. A. M., Van Zundert, A., Knape, J. T. A., Platelet-rich plasma preparation using three devices: Implications for platelet activation and platelet growth factor release. Growth Factors, 2006. 24(3): p. 165-171.
    34. Yun, S.H., Sim, E. H., Goh, R. Y., Park, J. I., Han, J. Y., Platelet Activation: The Mechanisms and Potential Biomarkers. Biomed Research International, 2016: p. 5.
    35. Fu, S.Z., Wang, X. H., Guo, G., Shi, S. A., Fan, M., Liang, H., Luo, F., Qian, Z. Y., Preparation and properties of nano-hydroxyapatite/PCL-PEG-PCL composite membranes for tissue engineering applications. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2011. 97B(1): p. 74-83.
    36. Thakur, T., Xavier, J. R., Cross, L., Jaiswal, M. K., Mondragon, E., Kaunas, R., Gaharwar, A. K., Photocrosslinkable and elastomeric hydrogels for bone regeneration. Journal of Biomedical Materials Research Part A, 2016. 104(4): p. 879-888.
    37. Levingstone, T.J., Thompson, E., Matsiko, A., Schepens, A., Gleeson, J. P., O'Brien, F. J., Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomaterialia, 2016. 32: p. 149-160.
    38. Tampieri, A., Sandri, M., Landi, E., Pressato, D., Francioli, S., Quarto, R., Martin, I., Design of graded biomimetic osteochondral composite scaffolds. Biomaterials, 2008. 29(26): p. 3539-3546.
    39. Wen, Y.-H., Lin, Wan-Ying, Lin, Chi-Jui, Sun, Yu-Chen, Chang, Pi-Yueh, Wang, Hsin-Yao, Lu, Jang-Jih, Yeh, Wen-Lin, Chiueh, Tzong-Shi %J Clinica Chimica Acta, Sustained or higher levels of growth factors in platelet-rich plasma during 7-day storage. 2018. 483: p. 89-93.
    40. Park, J.W., J.Y. Suh, and H.J. Chung, Effects of calcium ion incorporation on osteoblast gene expression in MC3T3-E1 cells cultured on microstructured titanium surfaces. Journal of Biomedical Materials Research Part A, 2008. 86A(1): p. 117-126.
    41. Matsui, H., Fukuno, N., Kanda, Y., Kantoh, Y., Chida, T., Nagaura, Y., Suzuki, O., Nishitoh, H., Takeda, K., Ichijo, H., Sawada, Y., Sasaki, K., Kobayashi, T., Tamura, S., The Expression of Fn14 via Mechanical Stress-activated JNK Contributes to Apoptosis Induction in Osteoblasts. Journal of Biological Chemistry, 2014. 289(10): p. 6438-6450.
    42. Marlovits, S., Hombauer, M., Truppe, M., Vecsei, V., Schlegel, W., Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes. Journal of Bone and Joint Surgery-British Volume, 2004. 86B(2): p. 286-295.
    43. Chua, K.H., Aminuddin, B. S., Fuzina, N. H., Ruszymah, B. H. I., Insulin-Transferrin-Selenium Prevent Human Chondrocyte Dedifferentiation And Promote The Formation Of High Quality Tissue Engineered Human Hyaline Cartilage. European Cells and Materials, 2005. 9: p. 58-67.
    44. Fufa, D., Shealy, Blake, Jacobson, May, Kevy, Sherwin, Murray, Martha and M.J.J.o.O.M. Surgery, Activation of platelet-rich plasma using soluble type I collagen. 2008. 66(4): p. 684-690.
    45. Wong, C.C., Chen, C. H., Chan, W. P., Chiu, L. H., Ho, W. P., Hsieh, F. J., Chen, Y. T., Yang, T. L., Single-Stage Cartilage Repair Using Platelet-Rich Fibrin Scaffolds With Autologous Cartilaginous Grafts. American Journal of Sports Medicine, 2017. 45(13): p. 3128-3142.
    46. Chiu, C.H., Chen, P., Yeh, W. L., Chen, A. C. Y., Chan, Y. S., Hsu, K. Y., Lei, K. F., The gelling effect of platelet-rich fibrin matrix when exposed to human tenocytes from the rotator cuff in small-diameter culture wells and the design of a co-culture device to overcome this phenomenon. Bone & Joint Research, 2019. 8(5): p. 216-223.
    47. Yaoren Chang , C.L., Lihua Yin, Research progress on platelet-rich fibrin derivatives. Hua Xi Kou Qiang Yi Xue Za Zhi, 2019/12. 37(6): p. 660–665.
    48. 林思緯、府城宏、郭宗甫, 幹細胞併合血小板纖維蛋白應用於骨折之修補與再生(Ι), in 國立台灣大學獸醫學系.

    QR CODE