簡易檢索 / 詳目顯示

研究生: 沈哲賢
Che-Hsien Shen
論文名稱: 生物系統之泊松波茲曼模型
Poisson-Boltzmann Model for Biological Systems
指導教授: 劉晉良
Jinn-Lian Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2012
畢業學年度: 101
語文別: 英文
中文關鍵詞: 泊松波茲曼方程柯克伍德介質球匹配介面和邊界
外文關鍵詞: Poisson—Boltzmann equation, Kirkwood dielectric sphere, matched interface and boundary
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 泊松波茲曼方程是一個非線性偏微分方程,它描述了分子和溶劑之間的靜電相的互作用。此方程在分子動力學和生物物理領域往往很重要,且在複雜系統中是難以解決的。Kirkwood的介質球提供了一個優秀的基準去測試泊松 - 玻爾茲曼方程求解的精度、收斂速度和效率。然而,在蛋白質分子表面要達到二階精度,我們必須處理奇異的電荷和界面問題。我們使用由陳、劉、王提出的分解方法[2]去應對奇異電荷,以及使用匹配接口和邊界的MIB方法處理接口的問題。


    The Poisson—Boltzmann equation is a non-linear partial differential equation. It describes the electrostatic interactions between molecule and solvent. The equation
    is important in the fields of molecular dynamics and biophysics. And it is often difficult to solve for complex systems. Kirkwood’s dielectric sphere provides an excellent
    benchmark for testing Poisson-Boltzmann (PB) solvers in terms of accuracy, speed of convergence, and efficiency [8]. However, to achieve second order accuracy for the molecular surfaces of proteins, we have to treat singular charge and interface problem. The decomposition method proposed by Chern, Liu, and Wang [2] cope with the singular charges, and the MIB (matched interface and boundary) method [19] for interface problem.

    1 Introduction 2 Poisson-Boltzmann equation (PBE) model and numerical methods 2.1 Poisson-Boltzmann equation (PBE) model 2.2 MIB for PBE 2.3 Decomposition for electrostatic potential 2.4 Electrostatic free energy of solvation 3 Dimensionless quantities 3.1 Unit conversion and physical constants 3.2 Dimensionless 4 Numerical results for test cases 5 Conclusions

    [1] N. A. Baker, Improving implicit solvent simulations: a Poisson-centric view, Curr.
    Opin. Struct. Biol. 15, 137 2005 .
    [2] I-L. Chern, J.-G. Liu, and W.-C. Wang, Accurate evaluation of electrostatics for
    macromolecules in solution, Methods Appl. Anal. 10 (2003) 309–328.
    [3] C. M. Cortis and R. A. Friesner, Numerical solution of the Poisson—Boltzmann equation
    using tetrahedral finite-element meshes, J. Comput. Chem. 18, 1591 (1997) .
    [4] F. Fogolari, A. Brigo, and H. Molinari, The Poisson—Boltzmann equation for biomolecular
    electrostatics: a tool for structural biology, J. Mol. Recognit. 15, 377 (2002).
    [5] M. Feig and C. L. Brooks III, Recent advances in the development and application
    of implicit solvent models in biomolecule simulations, Curr. Opin. Struct. Biol. 14,
    217 (2004)
    [6] K. E. Forsten, R. E. Kozack, D. A. Lauffenburger, and S. Subramaniam, J. Phys.
    Chem. 98, 5580 (1994)
    [7] F. Fogolari, A. Brigo, and H. Molinari, Protocol for MM/PBSA Molecular Dynamics
    Simulations of Proteins, Biophys. J. 85, 159 (2003) .
    [8] W. Geng, S. Yu, and G. Weia, Treatment of charge singularities in implicit solvent
    models, J. Chem. Phys. 127 (2007) 114106.
    [9] B. Honig and A. Nicholls, Classical electrostatics in biology and chemistry , Science
    268, 1144 (1995) .
    [10] P. A. Kollman, I. Massova, and C. Reyes et al. Calculating Structures and Free Energies
    of Complex Molecules:Combining Molecular Mechanics and Continuum Models,
    Acc. Chem. Res. 33, 889 (2000) .
    [11] J.-L. Liu, Lecture Notes on Poisson-Nernst-Planck Modeling and Simulation of Biological
    Ion Channels, 2012.
    [12] C. S. Peskin. Numerical analysis of blood flow in the heart. Journal of Computational
    Physics, 25(3):220—52, 1977.
    [13] B. Roux and T. Simonson, Implicit solvent models, Biophys. Chem. 78, 1 (1999) .
    [14] K. A. Sharp and B. Honig, Electrostatic Interactions in Macromolecules: Theory and
    Applications, Annu. Rev. Biophys. Biophys. Chem. 19, 301 (1990) .
    [15] J. M. J. Swanson, R. H. Henchman, and J. A. McCammon, Revisiting Free Energy
    Calculations: A Theoretical Connection to MM/PBSA and Direct Calculation of the
    Association Free Energy, Biophys. J.86, 67 (2004).
    [16] Y. N. Vorobjev and H. A. Scheraga, A fast adaptive multigrid boundary element
    method for macromolecular electrostatic computations in a solvent , J Comput.
    Chem. 18, 569 (1997) .
    [17] J. Warwicker and H. C. Watson, Calculation of the electric potential in the active
    site cleft due to 0-helix dipoles, J. Mol. Biol. 154, 671 (1982)
    [18] Y. Yanga, A. Zhou, A finite element recovery approach to Green’s function approximations
    with applications to electrostatic potential computation, J. Comput. Appl.,
    225 (2009), pp. 202—212.
    [19] Q. Zheng, D. Chen, and G.-W. Wei, Second-order Poisson Nernst-Planck solver for
    ion channel transport, J. Comp. Phys. 230 (2011) 5239-5262.
    [20] R. J. Zauhar and R. S. Morgan, A new method for computing the macromolecular
    electric potential, J. Mol. Biol. 186, 815 (1985) .

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE