簡易檢索 / 詳目顯示

研究生: 賴冠樺
論文名稱: 利用循環伏安法及交流阻抗法探討染料敏化型太陽能電池之電解液
指導教授: 戴念華
李紫原
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 110
中文關鍵詞: 染料敏化型太陽能電池交流阻抗法循環伏安法電解液
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 染料敏化型太陽能電池有著成本低廉及製程簡單的最大優勢,但光電轉換效率及穩定性一直是相關研究最大的瓶頸,而此瓶頸一般認為與電池本身內電阻太大與電解液易揮發造成穩定性不足有關。本研究的目的,是期望藉由釐清電解液對電池的影響,進一步有效降低內電阻的問題,而提升轉換效率。
    本研究主要是利用循環伏安法及交流阻抗法探討電解液組成,分別對溶質濃度、溶劑、填充物三方面做探討。實驗結果發現,當溶質濃度越高,阻抗值越小,但卻造成電子電洞對易再結合,無法有效提升轉換效率;溶劑則受到極性及解離度的影響而有不同的阻抗值,但具有解離度的溶劑卻會使電池本身無法累積光電壓值;填充物雖然會造成阻抗值增加,但能增加光電壓值,因而讓整體效率提升。


    摘要 Abstract 致謝 總目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 太陽能電池簡介 1.2.1 太陽能電池分類 1.2.2 太陽能電池發展 1.3 研究動機第二章 文獻回顧與原理 2.1 染料敏化太陽能電池原理2.2光觸媒半導體 (陽極) 2.3 表面修飾染劑 2.4 相對電極 (陰極) 2.5 電解質 2.5.1 有機溶劑 2.5.2 相對陽離子 2.5.3 添加物 第三章 研究方法與實驗步驟 3.1 實驗藥品與儀器 3.1.1 實驗藥品 3.1.2 實驗儀器 3.2 實驗步驟 3.2.1 電極的製作 3.2.2 電池組裝 3.3 量測儀器使用方式 3.3.1 光電轉換量測系統 (Sun Simulation) 3.3.2 暗電流量測 (Dark Current) 3.3.3 循環伏安測試 (Cyclic Voltammetry) 3.3.4 交流阻抗分析(Alternating Current Impedance Spectroscopy) 3.3.5 紫外線-可見光吸收光譜儀(UV-Vis Spectroscopy) 3.4 量測儀器使用原理 3.4.1 太陽光穿透大氣質量數的強度 3.4.2 光電轉換效率 3.4.3 電化學量測技術 3.4.4 交流阻抗原理 第四章 結果與討論 4.1 TiO2膜厚及吸附染劑量 4.2 電極特性對染化敏電池電性表現 4.3 電解液與相對電極相互作用阻抗值之表現 4.3.1 電極材料 4.3.2 電解質濃度 4.3.3 溶劑 4.3.4 添加劑 第五章 結論與建議 5.1 結論 5.2 建議 第六章 參考文獻

    [1] E. Martinot,“Renewables, Global Status Report 2006” http://www.ren21. net/globalstatusreport/download/RE_GSR_2006_Update.pdf
    [2] S. Baldwin, “RDD&D opportunities in the office of energy efficiency and renewable energy” www.nrel.gov/technologytransfer/entrepreneurs/pdfs/16th_rddd_opps.pdf
    [3] M. Grätzel, “Photo electrochemical cell” Nature., 414 , 338-344 (2001)
    [4] M. Grätzel, “Powering the planet” Nature., 403, 363-364 (2000),
    [5] Data to produce this graphic was taken from a NASA publication
    [6]王釿鋊”染料半導體光電池”,中技社通訊, 41, 5 (2002)
    [7] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar Cell Efficiency Tables (Version 31)”, Res. Appl., 16, 61-67 (2008)
    [8]http://physicsworld.com/cws/article/print/30345/1/PWbri2_01-05
    [9] A. Luque, S .Hegedus, Inc NetLibrary“ Handbook of Photovoltaic Science and Engineering” http://instrumentationcolloquium.lbl.gov/ Walukiewicz_High_Efficiency_Solar_Cells.pdf
    [10] B. Oregan, M. Grätzel, “A Low-cost, High-efficiency Solar-cell Bas on Dye- sensitized colloidal TiO2 Films” Nature., 353, 737-740 (1991)
    [11] M. K. Nazeeruddin, A. Key, I. Rodicio, R. Humphry-Baker, E.Müller, P. Liska, N. Vlachopulos, M Grätzel, “Conversion of light to electricity by cis-X2Bis(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(Ⅱ) charge-transfer sensitizers(X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes”, J. Am. Chem. Soc., 115, 6382 (1993)
    [12] M. K. Nazeeruddin, P. Pėchy,T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P.Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells”, J. Am. Chem. Soc ., 123, 1613 (2001)
    [13] C. J. Barbė, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications”, J. Am. Ceram. Soc ., 80,1357 (1997)
    [14] K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, “Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes ”, Sol .Energy Mater. Sol. Cell., 77, 89 (2003)
    [15] T. Horiuchi, H. Miura, S. Uchida, “Highly-efficient metal-free organic dyes for dye-sensitized solar cells”, Chem. Commun., 3036 (2003)
    [16] N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhôte, H. Pettersson, A. Azam, M. Grätzel, “The performance and stability of ambient temperature molten salts for solar cell applications”, J. Electrochem. Soc., 143, 3099 (1996)
    [17] B. O’Regan, D. T. Schwartz, “Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL’NCS/CuSCN: initiation and potential mechanisms”, Chem. Mater., 10, 1501 (1998)
    [18] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photo-to-electron conversion efficiencies”, Nature., 395, 583 (1998)
    [19] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte”, Nature materials., 2, 402 (2003)
    [20] C. Longo, A. F. Nogueira, M.-A. D. Paoli, “Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy”, J. Phys. Chem. B., 106, 5925 (2002)
    [21] A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells, 44, 99, (1996)
    [22] N. J. Cherepy, G. P. Smestad, M. Grätzel, J. Z. Zhang, “Ultrafast electron injection: implications for a photoelectrochemical Cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode”, J. Phys. Chem. B, 101, 9342 (1997)
    [23] M. Grätzel, “Photoelectrochemical cells”, Nature., 414, 338-414 (2001)
    [24] M. Grätzel, “Highly Porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 Composite Nanostructures on Glass with Enhanced Photocatalysis Fabricated by Anodization and Sol-Gel Process”, J. Phys. Chem. B, 107, 6586-6589 (2003)
    [25] R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya“ Efficiencies of Electron Injection from Excited N3 Dye into Nanocrystalline Semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) Films”, J. Phys. Chem. B, 108, 1818-1822 (2004)
    [26] H. Tada, A. Kokubu, M. Iwasaki, S. Ito. “Deactivation of the TiO2 Photocatalyst by Coupling with WO3 and the Electrochemically Assisted High Photocatalytic Activity of WO3”, Nature., 20, 4665-4670 (2004)
    [27] H. Tsubomura, M. Mastumura, Y. Nomura and T. Amaiya, “Dye sensitized zinc oxide/aqueous electrolyte/platinum photocell ”Nature., 261, 402-403 (1976)
    [28] K. Keis, E. Magnusson, H. Lindström, S. E. Lindquist, A. Hagfeldt, “A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes”, Solar Energy Materials & Solar Cells,73, 51-58 (2002)
    [29] G. Hodes, O. Niitsoo, S. K.Sarkar, C. Pejoux , S. Rühle ,D. Cahen, “Chemical bath deposited CdS / CdSe- sensitized porousTiO2 solar cells”, Journal of Photochemistry and Photobiology A: Chemistry,181 , 306-313 (2006)
    [30] A. Hagfeldtt M. Grätzel “Light-Induced Redox Reactions in Nano- crystalline Systems”, Chem, Rev. 95, 49-68 (1995)
    [31] K. Kalyanasundaram , M. Grätzel “Applications of functionalized transition metalcomplexes in photonic and optoelectronic devices”, Coordination Chemistry Reviews, 77, 347-414 (1998)
    [32] M. Grätzel “Mesoporous oxide junctions and nanostructured solar cells”, Current Opinion in Colloid & Interface Science, 4, 314-321 (1999)
    [33] Md. K. Nazeeruddin, S.M. Zakeeruddin, J.J. Lagref, P. Liska, P. Comte, C. Barolo, G. Viscardi , K. Schenk , M. Grätzel, “Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell”, Coordination Chemistry Reviews., 248, 1317-1328 (2004)
    [34] S. Ferrere, “New photosensitizers based upon [FeII(L)2(CN) 2] and [FeIIL3], where L is substituted 2,2-bipyridine”, Inorganica Chimica Acta., 329, 79-92 (2002)
    [35] H. Zabri, F. Odobel, S. Altobello, S. Caramori, C.A. Bignozzi, “ Efficient osmium sensitizers containing 2,2’- bipyridine -4,4’ -bisphosphonic acid ligand”, Journal of Photochemistry and Photobiology A: Chemistry., 166, 99-106 (2004)
    [36] G. J. Meyer, “Efficient Light-to-Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers”, Journal of Chemical Education., 74, 652-656 (1997)
    [37] M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorganic Chemistry., 44(20), 6842 -6851 (2005)
    [38] T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, “High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes”, J Am Chem. Soc., 126, 12218-12219 (2004)
    [39] Z. Wang, Y. Cui, K. Hara, Y. Danoh, C. Kasada, A. Shinpo., “A High-Light-Harvesting-Efficiency Coumarin Dye for Stable Dye-Sensitized Solar Cells”, Adv. Mater., 19, 1138-1141 (2007)
    [40] N. Papageorgiou, W. F. Maier, M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media”, J. Electrochem Soc., 144(3), 876-884 (1997)
    [41] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, Kazuhiko Murata, “High-performance carbon counter electrode for dye-sensitized solar cells”, Solar Energy Materials & Solar Cells, 79, 459–469 (2003)
    [42] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, Q Meng, “Application of carbon materials as counter electrodes of dye-sensitized solar cells”, Electrochemistry Communications, 9, 596-598 (2007)
    [43] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. H. Baker, P. Comte, P. Péchy, M. Grätzel, “Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes”, Journal of The Electrochemical Soc., 153(12), A2255- A2261 (2006)
    [44] M. Grätzel "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells", Journal of Photochemistry and Photobiology A: Chemistry, 164, 3-14 (2004)
    [45] G. Oskam, B. V. Bergeron, G. J. Meyer, P. C. Searson,“Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells”, J. Phys. Chem. B,105, 6867-6873 (2001)
    [46] S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori, C. A. Bignozz, “Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells”, J. AM. CHEM. SOC., 124, 11215- 11222 (2002)
    [47] S. Y. Huang, G. Schlichtho1rl, A. J. Nozik, M. Grä1tzel, A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem. B., 101, 2576-2582 (1997)
    [48] K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, K. G. U. Wijayantha, V. P. S. Perera, “A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex”, J. Phys. D: Appl. Phys., 31, 1492-1496 (1998)
    [49] B. O’Regan, D.T. Schwartz, “Efficient photo-hole injection from adsorbed cyanine dyes into electrodeposited copper(I) thiocyanate thin films”, Chem. Mater.,7, 1349-1354 (1996)
    [50] W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, “Photocurrent- Determining Processes in Quasi-Solid-State Dye-Sensitized Solar Cells Using Ionic Gel Electrolytes”, J. Phys.Chem. B, 107, 4374-4381 (2003)
    [51] D. Gebeyehu, C.J. Brabec, N.S. Sariciftci,“ Solid-state organic/ inorganic hybrid solar cells based on conjugated polymers and dye-sensitized TiO2 electrodes”, Thin Solid Films, 403-404, 271-274 (2002)
    [52] U. Bach, D. Lupo, P. Comte, J. E. Moser, F.Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies”, Nature, 395, 583- 585 (1998)
    [53] A. Hinsch et al, “Long-Term stability of dye-sensitized solar cells for large area power applications (LOTS-DSC)”, 16th European Photovoltaic Solar Energy Conference and Exhibition, Glasgow, (2000)
    [54] H. Pettersson, T. Gruszecki, “Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods”, Solar Energy Materials & Solar Cells, 70, 203-212 (2001)
    [55] R. Kawano, H. Matsui, C. Matsuyama, A. Sato, Md. A. B. H. Susan, N. Tanabe, M. Watanabe, “High performance dye-sensitized solar cells using ionic liquids as their electrolytes”, Journal of Photochemistry and Photobiology A: Chemistry, 164, 87-92 (2004)
    [56] Farahnaz Nour-Mohammadi, Hoang Thai Nguyen, Gerrit Boschloo , Torben Lund, “An investigation of the photosubstitution reaction between N719-dyed nanocrystalline TiO2 particles and 4-tert-butyl- pyridine” Journal of Photochemistry and Photobiology A: Chemistry., 187, 348-355 (2007)
    [57] H. T. Nguyen, H. M. Ta, T. Lund, “Thermal thiocyanate ligand substitution kinetics of the solar cell dye N719 by acetonitrile, 3-methoxypropionitrile, and 4-tert-butylpyridine”, Solar Energy Materials & Solar Cells, 91, 1934-1942 (2007)
    [58] Z. Kebede, S. E. Lindquist, “Donor-acceptor interaction between non-aqueous solvents and I2 to generate I3- ,and its implication in dye sensitized solar cells” Solar Energy Materials & Solar Cells, 57, 259-275 (1999)
    [59] S. Kambe, S. Nakade, T. Kitamura, Y. Wada, S. Yanagida, “Influence of the Electrolytes on Electron Transport in Mesoporous TiO2- Electrolyte Systems” J. Phys. Chem. B, 106, 2967-2972 (2002)
    [60] C. Shi, S. Dai, K. Wang, X. Pan, L. Zeng, L. Hu, F. Kong, L. Guo, “Influence of various cations on redox behavior of I− and I3− and comparison between KI complex with 18-crown-6 and 1,2-dimethyl-3- propylimidazolium iodide in dye-sensitized solar cells”, Electrochimica Acta, 50, 2597-2602 (2005)
    [61] H. Kusama, H. Arakawa, “Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance”, Journal of Photochemistry and Photobiology A: Chemistry, 160, 171-179 (2003)
    [62] H. Kusama, H. Arakawa, “Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell performance”, Journal of Photochemistry and Photobiology A: Chemistry, 162, 441-448 (2004)
    [63] P. Yao, L. Wang, E. Chiang, K. Ho, Y. Chen, “Nanocrystalline TiO2 for Porphyrin-Sensitized Solar Cells: A Preliminary Study”, Journal of Science and Engineering Technology, Vol. 4, 1, 35-42 (2008)
    [64] P. Atkins ,J. Paula, “Physical Chemistry 7th Edition”, OXFORD University Press Inc., New York. US (2002)
    [65] http://www.electrocube.com/support/bullet5.asp
    [66] J. Bisquert, “Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer”, Journal of Physical Chemistry B, 106, 325-333 (2002)
    [67] F. Komg, S. Dai, K. Wang , “Purification of Bipyridyl Ruthenium Dye and Its Application in Dye-Sensitized Solar Cells”, Plasma Science & Technology, vo1.8, No.5, 531-534 (2006)
    [68] T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, “High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes”, Journal of the American Chemical Society, 126, 12218-12219 (2004)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE