簡易檢索 / 詳目顯示

研究生: 許宇鋒
Shiu, Yu-Feng
論文名稱: 鈷摻雜之二氧化鈰磁性奈米粒子
Preparation and Characterization of Cobalt Doped Cerium Oxide Magnetic Nanoparticles
指導教授: 蘇雲良
Soo, Yun-Liang
口試委員: 湯茂竹
張石麟
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 56
中文關鍵詞: 氧化鈰稀磁性氧化物
外文關鍵詞: cerium oxide, DMO, coblat
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在探究稀磁性氧化物的磁性來源,透過化學沉澱法製成鈷摻雜二氧化鈰奈米粒子,並藉由改變氣氛退火條件、前驅物比例,以達到控制氧空缺濃度和鈷摻雜濃度,再探討這兩個條件與磁性之間的關係。
      透過X光繞射(XRD)提供二氧化鈰的長程有序結構,確定其晶相為螢石結構,且無氧化鈷雜相存在,並搭配高解析度電子繞射顯微鏡(HRTEM)觀察到的實際影像,確定二氧化鈰大小均勻約在10奈米左右,使用X光精密吸收結構(XANES)分析,排除可能形成氧化鈷或金屬團聚的可能,並由延伸X光精密吸收結構(EXAFS)提供鈷原子周圍短程有序結構,確定鈷摻雜進入二氧化鈰主體中且處在鑲嵌的位置上。並由感應耦合電漿質譜分析儀(ICP-MS)確定各樣品鈷摻雜的實際濃度,且不含有鐵、鎳元素,排除樣品在製備過程被汙染的可能性。再透過拉曼光譜分析,拉曼頻率位移確定不同氣氛退火能有效的改變氧空缺濃度。磁性量測使用超導量子干涉儀(SQUID),由室溫量測磁滯曲線得知所有樣品皆存在順磁性質,且在富含氧空缺樣品觀察到鐵磁性,確定氧空缺和鈷摻雜是存在鐵磁性質的必要條件,最後引入BMP(bounded magnetic polarons)理論,成功的利用BMP理論解釋鈷摻雜二氧化鈰奈米粒子系統,磁性變化與氧空缺和鈷摻雜濃度的關係。


    In this research, the origin of magnetism in diluted magnetic oxides system has been investigated using a variety of different experimental methods. Cobalt doped cerium oxide nanoparticles were synthesized by chemical precipitation technique. It is possible to adjust the concentration of oxygen vacancies through oxygen or forming gas thermal annealing. The precursor ratio changes the concentration of cobalt dopant atoms. We have studied the correlation between magnetism and oxygen vacancies or concentration of doping cobalt in this DMO system. The long-range-order cerium oxide structure was investigated by X-ray diffraction (XRD). High resolution transmission electron microscopy (HRTEM) was used to obtain the images of cerium oxide nanoparticles. The result of cobalt K-edge x-ray absorption near-edge structure(XANES) ruled out the possibility of forming cobalt oxide or cobalt clusters. Extended x-ray absorption fine structure (EXAFS) measurements not only reveal the cobalt short-range-order structure but also confirm that cobalt atoms are on interstitial sites in the CeO2 host. Raman spectra provide the evidence that the concentration of oxygen vacancies increase after annealing in forming gas. The room temperature M-H curve reveals paramagnetism in all samples, and ferromagnetism in some oxygen vacancy rich samples, which implies an important correlation between oxygen vacancies, cobalt doping and ferromagnetism. Finally, the bounded magnetic polarons model was supported by our results to be responsible for the magnetism in cobalt doped cerium oxide nanoparticles.

    摘要............................................................................................................................c .I Abstract……………………………………………………………..………………………………. .II 致謝............................................................................................................................ III 章節目錄................................................................................................................ .IIV圖表目錄............................................................................................................... .VI第一章 序論……………………………………………………………………………….….………………….. 1 1-1-1-研究動機………………………………………………….….……………………..…….………………. 1 1-2-1-論文簡介……………………………………………………..………………………..….………………. 1 第二章 理論與文獻回顧………………………………………………..……….…..…………………. 2 2-1 二氧化鈰材料介紹…………………….………………………………….….…………………….. 2 2-2 稀磁性氧化物介紹(dilute magnetic oxide system,DMOs) …………….…….…… 4 2-3 DMO磁性理論簡介 …………………………………….……………………………………..……. 5 2-3-1超交換作用(super-exchange interation)………………………….……….………………. 5 2-3-2雙重交換作用(doube-exchange interation)………………………….….………………. 6 2-3-3 F+-center exchange………………………….……….…………………………………….…………. 6 2-3-4 RKKY interation(Ruderman-Kittel-Kasuya-Yosida)……………………………..………. 7 2-4 BMP理論(Bound magnetic polaron) ……………….…………….………….………………. 8 2-5 Charge-transfer ferromagnetism ………………………….…………………….……………. 10 第三章 實驗方法與原理..………….…………………………………………….……………………12 3-1-1 X光粉末繞射儀(X-Ray Powder Diffraciton)……………………………...………..…...12 3-2- 高解析穿透式電子顯微鏡(HR-TEM).……………………..………………………………...14 3-3- 超導量子干涉儀(SQUID)………………………………………….……….……………………….15 3-4 拉曼光譜(Micro-Raman Spectra)………………………………….………………………......16 3-5-1-X光精密吸收光譜(X-ray absorption fine structure ,XAFS).........……….17 第四章 實驗結果與分析………………………………………………………………………………..23 4-1 樣品製備…………………………………………………………………………………..……………...23 4-1-1-實驗試藥..…………………………………………………………..……………..…………………….23 4-1-2-沉澱法製備鈷摻雜氧化鈰奈米粒子……………..………………………..………………..23 4-1-3-氣氛退火和摻雜濃度……………………………………………………………………….……...26 4-2 -X光繞射(XRD)分析…………………………..…………………….………….…………………….28 4-3-1-高解析穿透式電子顯微鏡(HR-TEM)分析…………………….…….…………………...31 4-4-1- X光精密吸收結構(XAFS)分析…………………………..…….……………………………….34 4-4-1近邊X光精密吸收結構 (XANES) ……………………………..……………………………...34 4-4-2延伸X光精密吸收結構 (EXAFS) ………………………………..…………………………….36 4-5 感應耦合電漿質譜分析儀(ICP-MS)分析.…………………………..……………………..41 4-6 拉曼光譜(Raman spectra)分析.……………………………….………………………………..42 4-7 超導量子干涉儀(SQUID)分析.………………..……………….………………………………..45 第五章 結論………………………………………………………………………………………………….…...53 參考文獻………………..……………………………………………………………………………………….…. .54

    (1) F.S. Galasso, [Structure and Properties of Inorganic Solids.], Pergamon, Oxford(1970)
    (2) S. Tsunekawa, T. Fukuda and A. Kasuya, [Blue Shift in Ultraviolet Absorption Spectra of Monodispersed CeO2-x Nanoparticles], J.Appl. Phys., 87, 1318-1321(2000)
    (3) A. Thurber, K. M. Reddy, V. Shutthanandan, M. H. Engelhard, C. Wang, J. Hays, A. Punnoose, [Ferromagnetism in chemically synthesized CeO2 nanoparticles by Ni doping], Phys. Rev. B, 76, 165206 (2007)
    (4) N. Izu, W. Shin, N. Murayama and S. Kanzaki, [Fast respones of resistive-type xxygen gas sensors based on nano-sized ceria powder], Sens. Actuator B, 87, 95-98(2002)
    (5) J.M.D. Coey, [Dilute magnetic oxides, Curr. Opin], Solid State Mater. Sci., 10, 83 (2006)
    (6) Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki,
    P. Ahmet, T. Chikyow, Shin-ya Koshihara, and H. Koinuma, [Room-TemperatureFerromagnetism in Transparent Transition Metal-Doped Titanium Dioxide],Science, 292, 854 (2001) . Matsumoto Y, Takahashi R,
    (7) M. Murakami, T. Koida, X.J. Fan, T. Hasegawa, et al.[Frromagnetism in Co-doped TiO2 rutile thin films grown by laser molecular beam epitaxy], Jpn. J. Appl. Phys., 40, L1204–6 (2001) .
    (8) M. A. Garcia, J. M. Merino, E. Fernández Pinel, A. Quesada, J. de la Venta, M. L. Ruíz González, G. R. Castro, P. Crespo, J. Llopis, J. M. González-Calbet, and A. Hernando, [Magnetic Properties of ZnO Nanoparticles] ,Nano Lett. 7, 1489(2007)
    (9) R. K. Singhal, P. Kumari, Samariya, Sudhish Kumar, S. C. Sharma, Y. T. Xing,and Elisa B. Saitovitch,[ Role of electronic structure and oxygen defects in driving ferromagnetism in nondoped bulk CeO2], Appl. Phys., 97, 172503(2010)
    (10) Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi, and H. Hori,[Direct Observation of Ferromagnetic Spin Polarization in Gold Nanoparticles], Phys. Rev. Lett. 93, 116801 (2004)
    (11) L. M. Johnson, A. Thurber, J. Anghel, M. Sabetian, M. H. Engelhard, D. A. Tenne, C. B. Hanna, and A. Punnoose, [Transition metal dopants essential for producing ferromagnetism in metal oxide nanoparticles], Phys. Rev. B. 82, 054419(2010)
    (12) C. Zener, [Interaction Between the d Shells in the Transition Metals],
    Phys. Rev., 81,440 (1951) .
    (13) C. Zener, [Interaction between the d-Shells in the Transition Metals. II.
    Ferromagnetic Compounds of Manganese with Perovskite Structure] ,
    Phys. Rev., 82, 403 (1951) .
    (14) J. M. D. Coey, M. Venkatesan, C.B. Fitzgerald, [Donor impurity band exchange in dilute ferromagnetic oxides], Nature Materials, 4, 173 (2005)
    (15) J. M. D. Coey and S.A. Chambers, [Oxide dilute magnetic semiconductors fact of fiction? ], MRS Bulletin, 33, 1053 (2008)
    (16) J. M. D. Coey, Kwanruthai Wongsaprom, J Alaria and M Venkatesa[Charge-transfer ferromagnetism in oxide Nanoparticles」,J. Phys. D: Appl. Phys., 41, 134012 (2008)
    (17) J. M. D. Coey, P Stamenov, R D Gunning, M Venkatesan and K Paul,[Ferromagnetism in defect-ridden oxides and related materials],New Journal of Physics, 12, 053025 (2010)
    (18) C. Kittel, [Introduction to solid state physics], Eight edition
    (19) M. Li, S. Ge, W. Qiao, L. Zhang, Y. Zuo, and S. Yan, [Relationship between the surface chemical states and magnetic properties of CeO2 nanoparticles], Appl. Phys. Lett. 94, 152511(2009)
    (20) 王敬森, [摻鈷三氧化二釔奈米粒子之製備與結構分析],清華大學碩士論文(2009)
    (21) E. Matijević and W, P, Hsu, [Preparation and properties of monodispersed colloidal particles of lanthanide compounds], J. Colloid Interf. Sci., 118,506-523(1987)
    (22) S. Tsunekawa, K. Ishikawa, Z.-Q. Li, Y. Kawazoe, and A. Kasuya , [Origin of Anomalous Lattice Expans ion in Oxide Nanoparticles], Phys. Rev. Lett. 85, 16 (2000)
    (23) Y. L. Soo, J. H. Yao, C. S. Wang, S. L. Chang, C. A. Hsieh, J. F. Lee, T. S. Chin, [Local structures and concentration dependence of magnetic properties in Cr- and Mn-doped amorphous silicon ferromagnetic thin films], Phys. Rev. B., 81, 104104(2010)
    (24) Feng Zhang, Siu-Wai Chan, Jonathan E. Spanier, Ebru Apak, Qiang Jin, Richard D. Robinson, and Irving P. Herman, [Cerium oxide nanoparticles: Size-selective formation and structure analysis], Appl. Phys. Lett. 80, 127 (2002)
    (25) J. R. McBride, K. C. Hass, B. D. Poindexter, and W. H. Weber, [Raman and x-ray studies of Ce1-xREXO2-y ,where RE=La, Pr, Nci, Eu, Gd, and .Tb], J. Appl. Phys., 76, 4(1994)
    (26) Z. D. Dohčević-Mitrović, N. Paunović, M. Radović, Z. V. Popović, B. Matović, B. Cekića, and V. Ivanovski, [Valence state dependent room-temperature ferromagnetism in Fe-doped ceria nanocrystals], Appl. Phys. Lett. 96, 203104 (2010)
    (27) S. Patil, S, Seal, Y.Guo, A. Schulte, and J. Norwood, [Role of trivalent La and Nd dopants in lattice distortion and oxygen vacancy generation in cerium oxide nanoparticles], Appl. Phys. Lett. 88, 243110 (2006)
    (28) Z. Wu, L,.Guo , H. Li , Q. Yang , Q. Li , [EXAFS study on the local atomic structures around Ce in CeO2 nanoparticles], Materials Science and Engineering, A286, 179–182 (2000)
    (29) J. H. Park, M. G. Kim, H. M. Jang, S. Ryu, Y. M. Kim, [Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films], Appl. Phys. Lett. 84, 8 (2004)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE