研究生: |
吳琬瑤 |
---|---|
論文名稱: |
以鈉參雜鉬電極和鈉離子佈植研究在銅銦鎵硒太陽能電池上的鈉效應 Na Effects on Na incorporation methods by Mo:Na and Na implantation |
指導教授: |
賴志煌
Lai, Chih-Huang |
口試委員: |
侯惟仁
莊佳智 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | Cu(In,Ga)Se2 薄膜型太陽電池 、鈉參雜钼靶材 、鈉離子佈植 |
外文關鍵詞: | Cu(In,Ga)Se2 thin film solar cee, Na doped Molybdenum target, Na implantation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
世界效率的CuIn1-xGaxSe2太陽能電池是使用三階段共蒸鍍製程,以鈉玻璃(soda-lime glass, SLG)基板提供Na,效率可達20.4%[1];在可饒式基板上,則以NaF後退火達到18.3%[2]。一直以來,Na參雜是CIGS太陽電池製程中,達到高效率的關鍵因素之一。本論文主要著重開發新穎Na參雜製程,包括:(1)以直流濺鍍Na參雜Mo靶材,得到Mo:Na薄膜做為成長CIGS的前驅層 (2)Na離子佈植於CIGS層,分別研究Na在CIGS太陽能元件上的效應。
第一部份,以Mo:Na薄膜搭配Mo薄膜的多層結構,既可做為良好的背電極,又可以藉由控制Mo:Na薄膜厚度,做不同程度的Na參雜。雖然整體提供Na含量不如由SLG擴散上來的多,但是卻更有效地表現Na效應,提升元件電性。由結果分析出,Na主要藉由鈍化V_Se缺陷,消除了由(V_Se+V_Cu)缺陷對在靠近CIGS表面形成的p+層,改善正偏壓下的光電流阻礙現象(current blocking)和提升Voc,進而提高元件效率。
第二部份,以離子佈植的方式在CIGS層參雜Na。本實驗室為少數團隊使用離子佈植研究Na效應,配合快速升溫退火修復晶格損傷,並使用拉曼光譜檢測晶格損傷和退火後的修復程度。於初步結果觀察到,在退火過程中,晶格缺陷的交互作用產生新的缺陷,影響元件電性表現。進一步藉由升溫基板佈植,可以將晶格損傷程度降到最低。配合適當退火條件,離子佈植Na,可以消除施體態缺陷,並有效提高載子濃度。
Polycrystalline CuIn1-xGaxSe2 (CIGS) solar cell with efficiency of 20.3% was reported using three-stage co-evaporation on soda-lime glass substrate. It has been known that Na diffusion from the soda-lime glass into the CIGS absorber is one of the key factors to achieve the maximum cells efficiency. In this thesis, we study to alternative Na incorporation methods, including (1) Sputtering Na doped Molybdenum film (Mo:Na) and (2) Na implantation.
In the first part, we use Mo/Mo:Na multilayer structure to serve as cell back contact and provide CIGS with Na. Na doped by Mo:Na film with increasing thickness can efficiently eliminate the current blocking, barrier for light current at forward bias, and increase the open circuit voltage than Na doped by SLG due to better compensate VSe with the help of oxygen.
In the second part, Ion implantation was applied for quantitative and spatial control of Na distribution in CIGS films. In the annealing process, the formation of donor type defects due to defects interaction decreases the carrier density of CIGS. Implantation on a heated substrate can efficiently reduce implant-induced lattice displacement and lead to an enhancement in electrical properties of device.
1.Jackson, P., et al., New world record efficiency for Cu (In, Ga) Se2 thin‐film solar cells beyond 20%. Progress in Photovoltaics: Research and applications, 2011. 19(7): p. 894-897
2.Chirilă, A., et al., Highly efficient Cu (In, Ga) Se2 solar cells grown on flexible polymer films. Nature Materials, 2011. 10(11): p. 857-861.
3.Hu, C.C., Modern Semiconductor Devices for Integrated Circuits/PEARSON.
4.Luque, A. and S. Hegedus, Handbook of photovoltaic science and engineering2010: Wiley.
5.Hegedus, S.S. and W.N. Shafarman, Thin‐film solar cells: device measurements and analysis. Progress in Photovoltaics: Research and applications, 2004. 12(2‐3): p. 155-176.
6.Heath, J.T., J.D. Cohen, and W.N. Shafarman, Bulk and metastable defects in CuInGaSe thin films using drive-level capacitance profiling. Journal of Applied Physics, 2004. 95: p. 1000.
7.Schlenker, T., et al., Grain growth studies of thin Cu (In, Ga) Se< sub> 2</sub> films. Journal of crystal growth, 2004. 264(1): p. 178-183
8.Wei, S.-H.Z., S. B.; Zunger, Alex, Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Applied Physics Letters, 1998. 72.
9.Jubault, M., et al., Optimization of molybdenum thin films for electrodeposited CIGS solar cells. Solar energy materials and solar cells, 2011. 95: p. S26-S31
10.Bär, M., et al., Chemical structures of the Cu (In, Ga) Se_ {2}/Mo and Cu (In, Ga)(S, Se) _ {2}/Mo interfaces. Physical Review B, 2008. 78(7)
11.Yoon, J.H., et al., Optical analysis of the microstructure of a Mo back contact for Cu (In, Ga) Se2 solar cells and its effects on Mo film properties and Na diffusivity. Solar Energy Materials and Solar Cells, 2011.
12.Repins, I., et al., 19• 9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81• 2% fill factor. Progress in Photovoltaics: Research and applications, 2008. 16(3): p. 235-239 .
13.Chen, C.H., et al., A promising sputtering route for one-step fabrication of chalcopyrite phase Cu (In, Ga) Se< sub> 2</sub> absorbers without extra Se supply. Solar energy materials and solar cells, 2012. 103: p. 25-29
14.Başol, B.M., et al., Electroplating based CIGS technology for Roll-to-Roll Manufacturing. 2008.
15.Zhang, S.B., et al., Defect physics of the CuInSe_ {2} chalcopyrite semiconductor. Physical Review B, 1998. 57(16): p. 9642.
16.Schmid, D., et al., Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2. Journal of Applied Physics, 1993. 73(6): p. 2902-2909
17.Rau, U., D. Abou-Ras, and T. Kirchartz, Advanced characterization techniques for thin film solar cell ,2011
18.Persson, C., et al., n-type doping of CuInSe_ {2} and CuGaSe_ {2}. Physical Review B, 2005. 72(3).
19.Gloeckler, M. and J.R. Sites, Efficiency limitations for wide-band-gap chalcopyrite solar cells. Thin Solid Films, 2005. 480: p. 241-245
20.Siebentritt, S., Wide gap chalcopyrites: material properties and solar cells. Thin Solid Films, 2002. 403: p. 1-8
21.Rau, U. and H.W. Schock, Electronic properties of Cu (In, Ga) Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. Applied Physics A: Materials Science & Processing, 1999. 69(2): p. 131-147
22.Möller, H.J., Structure and defect chemistry of grain boundaries in CuInSe2. Solar cells, 1991. 31(1): p. 77-100
23.Wada, T., et al., Characterization of the Cu (In, Ga) Se< sub> 2</sub>/Mo interface in CIGS solar cells. Thin Solid Films, 2001. 387(1): p. 118-122
24.Caballero, R., et al., The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates. Thin Solid Films, 2009. 517(7): p. 2187-2190
25.Granata, J.E., et al. Quantitative incorporation of sodium in CuInSe2 and Cu (In, Ga) Se2 photovoltaic devices. 1997. IEEE.
26.Caballero, R., et al. Evaluating different Na-incorporation methods for low temperature grown CIGSe thin film on polyimide foils. 2011. IEEE.
27.Ishizuka, S., et al., Na-induced variations in the structural, optical, and electrical properties of Cu (In, Ga) Se2 thin films. Journal of Applied Physics, 2009. 106(3)
28.Rockett, A., et al., Na in selenized Cu (In, Ga) Se< sub> 2</sub> on Na-containing and Na-free glasses: distribution, grain structure, and device performances. Thin Solid Films, 2000. 372(1): p. 212-217
29.Rudmann, D., Effects of sodium on growth and properties of Cu(In,Ga)Se2 thin films and solar cells, in Dipl. Phys, 2004, University of Basel
30.Su-Huai Wei, S.B.Z., and Alex Zunger, Effects of Na on the electrical and structural properties of CuInSe2. J. Appl. Phys, 1999. 85, 7214.
31.M. A. Contreras, B.E., P. Dippo, J. Webb, J. Granata, K. Ramanathan, S. Asher, A. Swartzlander, and R. Noufi in The Conference Record of the 26th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1997), 1997: p. 359.
32.M. Ruckh, D.S., M. Kaiser, R. Schaffler, T. Walter, and H. W. Schock, in Proceedings of the First World Conference on Photovoltaic Energy Conversion 1994, IEEE: New York. p. 156.
33.Rincon, C., et al., Raman spectra of the ordered vacancy compounds CuInSe and CuGaSe. Applied Physics Letters, 1998. 73: p. 441.
34.Mansfield, L.M., et al., Sodium-Doped Molybdenum Targets for Controllable Sodium Incorporation in CIGS Solar Cells. 2011.
35.Reinfried, N., et al., STABLE AND REPRODUCIBLE Na DOPING FOR CIS/CIGS SOLAR CELLS USING MoNa SPUTTERING TARGETS.
36.Wuerz, R., et al., Alternative sodium sources for Cu (In, Ga) Se2 thin-film solar cells on flexible substrates. Thin Solid Films, 2011.
37.Igalson, M., et al. Barriers for current transport in CIGS structures. 2011. IEEE.
38.Lany, S. and A. Zunger, Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors. Physical Review B, 2005. 72(3)
39.Rudmann, D., et al., Efficiency enhancement of Cu (In, Ga) Se2 solar cells due to post-deposition Na incorporation. Applied Physics Letters, 2004. 84(7): p. 1129-1131
40.Mayer, J.W., L. Eriksson, and J. Davies, Ion implantation in semiconductors: silicon and germanium. Academic Press, Inc., 1970, 1970: p. 280.
41.Rockett, A., et al. Na incorporation and diffusion in CuIn1-xGaxSe2. 1996. IEEE.
42.Donnelly, S.E., et al., In situ transmission electron microscopy studies of radiation damage in copper indium diselenide. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006. 242(1): p. 686-689
43.Yakushev, M.V., et al., Incorporation of hydrogen in CuInSe2: Improvements of the structure. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2011. 29