簡易檢索 / 詳目顯示

研究生: 高睿彣
Kao, Ruei-Wen
論文名稱: 以氧化鋯鉿鐵電元件實現高可靠度之可切換式二極體應用於記憶體內運算
HfZrOx-Based Switchable Diode with Good Reliability for In-Memory Computing Applications
指導教授: 巫勇賢
Wu, Yung-Hsien
口試委員: 李耀仁
Lee, Yao-Jen
吳添立
Wu, Tian-Li
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 72
中文關鍵詞: 鐵電性氧化鋯鉿可切換式二極體記憶體內運算電阻式切換憶阻器時序邏輯布林函數蕭特基發射馮諾伊曼瓶頸
外文關鍵詞: ferroelectricity, HfZrOx, switchable diode, in-memory computing, resistive switching, memristor, sequential logic cycle, Boolean function, Schottky emission, von Neumann bottleneck
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當前的電腦系統是採用馮諾伊曼架構,然而在數據處理量日漸龐大的情況下,運算與記憶單元之間數據的傳遞面臨延遲及功耗等瓶頸。啟發於人類大腦,同時具有運算及記憶功能的記憶體內運算(In-memory computing, IMC)為能夠克服馮諾伊曼瓶頸的其中一種研究方向。電阻式切換能夠在執行完邏輯運算之後將其資料穩定地儲存,而被視為最有希望實現記憶體內運算的元件之一。
    本篇論文以TiN/HfOx/HfZrOx/TiN的結構下實現具高可靠度的可切換式二極體,研究結果顯示在最佳化下RHRS/RLRS比值約2600,整流比約1000,資料儲存可保留長達十年。HfZrOx薄膜在沈積完成後即進行400°C熱退火製程,可形成斜方晶相且具有鐵電特性,二極體的切換由HfZrOx的極化值以及外加電場主導。透過堆疊非晶的HfOx可以使記憶狀態更穩定地維持,HfZrOx和HfOx皆視為n型氧化物半導體,而非晶的HfOx可以抑制空乏區中的空間電荷被復合。可切換式二極體能夠在單一元件下,以時序邏輯的方式實現16種布林函數。本論文提出的可切換式二極體除了具有結構簡單以及良好的記憶特性與運算能力,能夠實現記憶體內運算,更重要的是,選用的材料可以整合於現今製程中。


    Current von Neumann system that shuttles data between memory and computing unit has faced the bottleneck of latency and power consumption, thus the system beyond von Neumann architecture with the function of in-memory computing (IMC) that is inspired by the human brain is essential for data-centric AI. Resistive switching (RS) is one of the most promising candidates to implement IMC since it enables “stateful” logics that simultaneously perform logic operations and store data.
    In this research, stack structure TiN/HfOx/HfZrOx/TiN was explored to accomplish switchable diode behavior with desirable memory characteristics in terms of high RHRS/RLRS ratio of ~2600, large rectification of ~1000, retention up to 10 years. HfZrOx thin films were crystallized at 400°C post-deposition annealing, forming the orthorhombic phase with ferroelectric characteristic. The bias-controlled direction of built-in diode was studied to be dominated by the polarization of the HfZrOx while the good retention can be achieved by stacking amorphous HfOx which is beneficial to suppress the recombination in space charge region as both HfZrOx and HfOx assumed to be n-type semiconducting-like oxide. More importantly, 16 Boolean functions can be realized in single device through sequential logic cycles. The prominent nonvolatile memory and computation performance make it a promising device for in-memory computing. Besides electrical properties, it well outperforms other IMC devices due to simple structure and fab-friendly materials, inspiring a new approach to capitalize on the salient features of ferroelectric HfZrOx for IMC in the AI era.

    摘要---------------------------------------------------- i Abstract----------------------------------------------- ii 致謝--------------------------------------------------- iii 目錄---------------------------------------------------- v 表目錄------------------------------------------------- viii 圖目錄-------------------------------------------------- ix 第一章 緒論 ---------------------------------------------- 1 1-1 簡介 ------------------------------------------------ 1 1-2 論文架構 -------------------------------------------- 2 第二章 電阻式切換背景回顧 --------------------------------- 3 2-1 電阻式切換介紹 --------------------------------------- 3 2-1-1 電阻式切換特性 ------------------------------------- 3 2-1-2 電阻式切換之機制探討 -------------------------------- 4 2-2 電流在介電層中的傳導機制 ------------------------------ 5 2-2-1 蕭特基發射電流 ------------------------------------- 6 2-2-2 富爾諾罕漏電流及直接穿隧電流 ------------------------- 7 2-2-3 普爾-法蘭克發射 ------------------------------------- 7 2-2-4 空間電荷限制傳導 ------------------------------------ 8 2-3 電阻式切換實現布林運算 --------------------------------- 8 2-3-1 簡介憶阻器及運算方法 --------------------------------- 8 2-3-2 時序邏輯 ------------------------------------------- 9 第三章 Switchable diode機制探討與研究動機 ------------------ 21 3-1 Switchable diode電性介紹 ----------------------------- 21 3-2 Switchable diode結構、材料與機制 ---------------------- 21 3-2-1 不具鐵電特性之switchable diode ---------------------- 22 3-2-2 具鐵電特性之switchable diode ------------------------ 23 3-3 改善電阻切換特性的方法 --------------------------------- 25 3-4 switchable diode作為邏輯運算 -------------------------- 26 3-5 研究動機 ---------------------------------------------- 27 第四章 實驗規劃與流程 -------------------------------------- 32 4-1 樣品A、樣品B單層介電層製備流程 -------------------------- 32 4-2 樣品三、樣品四、樣品五雙層介電層製備流程 ----------------- 33 4-3 電性量測方法 ------------------------------------------ 34 第五章 實驗結果及討論 -------------------------------------- 37 5-1 物性分析 ---------------------------------------------- 37 5-2 電性分析 ---------------------------------------------- 37 5-2-1 電流對電壓特性曲線 ----------------------------------- 37 5-2-2 極化值對電場特性曲線 --------------------------------- 38 5-3 元件切換機制與樣品間的比較 ------------------------------ 38 5-3-1 Switchable diode切換機制 ---------------------------- 38 5-3-2 加入非晶HfOx改善Retention --------------------------- 40 5-3-3 HfOx不同厚度比較 ------------------------------------ 41 5-4 可靠度分析 -------------------------------------------- 42 5-4-1 Retention ------------------------------------------ 42 5-4-2 On/off ratio與整流比 -------------------------------- 43 5-5 邏輯運算 ---------------------------------------------- 43 5-6 與其他論文比較 ----------------------------------------- 44 第六章 結論與未來展望 -------------------------------------- 64 6-1 結論 ------------------------------------------------- 64 6-2 未來展望 ---------------------------------------------- 65 參考文獻 -------------------------------------------------- 66

    [1]H. P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee, F. T. Chen, and M. Tsai, "Metal–Oxide RRAM," Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, 2012.
    [2]E. Linn, R. Rosezin, C. Kügeler, and R. Waser, "Complementary resistive switches for passive nanocrossbar memories," Nature Materials, vol. 9, pp. 403-406, 2010.
    [3]B. Hudec, C. W. Hsu, I. T. Wang, W. L. Lai, C. C. Chang, T. Wang, K. Fröhlich, C.-H. Ho, C.-H. Lin, and T.-H. Hou, "3D resistive RAM cell design for high-density storage class memory—a review," Science China Information Sciences, vol. 59, no. 6, p. 061403, 2016.
    [4]F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, "Recent progress in resistive random access memories: Materials, switching mechanisms, and performance," Materials Science and Engineering: R: Reports, vol. 83, pp. 1-59, 2014.
    [5]A. Sawa, "Resistive switching in transition metal oxides," Materials Today, vol. 11, no. 6, pp. 28-36, 2008.
    [6]Z. B. Yan and J. M. Liu, "Coexistence of high performance resistance and capacitance memory based on multilayered metal-oxide structures," Scientific Reports, Article vol. 3, p. 2482, 2013.
    [7]W. E. Lim and R. Ismail, "Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey," Electronics, vol. 4, no. 3, 2015.
    [8]F. C. Chiu, "A review on conduction mechanisms in dielectric films," Advances in Materials Science and Engineering, vol. 2014, 2014.
    [9]J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, "A defect-tolerant computer architecture: Opportunities for nanotechnology," Science, vol. 280, no. 5370, pp. 1716-1721, 1998.
    [10]S. Paul and S. Bhunia, "A Scalable Memory-Based Reconfigurable Computing Framework for Nanoscale Crossbar," IEEE Transactions on Nanotechnology, vol. 11, no. 3, pp. 451-462, 2012.
    [11]J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams, "‘Memristive’ switches enable ‘stateful’ logic operations via material implication," Nature, vol. 464, p. 873, 2010.
    [12]E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, and R. Waser, "Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations," Nanotechnology, vol. 23, no. 30, p. 305205, 2012.
    [13]A. Siemon, T. Breuer, N. Aslam, S. Ferch, W. Kim, J. van den Hurk, V. Rana, S. Hoffmann‐Eifert, R. Waser, and S. Menzel, "Realization of Boolean Logic Functionality Using Redox‐Based Memristive Devices," Advanced functional materials, vol. 25, no. 40, pp. 6414-6423, 2015.
    [14]S. Gao, F. Zeng, M. Wang, G. Wang, C. Song, and F. Pan, "Implementation of Complete Boolean Logic Functions in Single Complementary Resistive Switch," Scientific Reports, Article vol. 5, p. 15467, 2015.
    [15]Z. Wang, Y. Su, Y. Li, Y. Zhou, T. Chu, K. Chang, T. Chang, T. Tsai, S. M. Sze, and X. Miao, "Functionally Complete Boolean Logic in 1T1R Resistive Random Access Memory," IEEE Electron Device Letters, vol. 38, no. 2, pp. 179-182, 2017.
    [16]Z. Wang, Y. Li, Y. Su, Y. Zhou, L. Cheng, T. Chang, K. Xue, S. M. Sze, and X. Miao, "Efficient Implementation of Boolean and Full-Adder Functions With 1T1R RRAMs for Beyond Von Neumann In-Memory Computing," IEEE Transactions on Electron Devices, vol. 65, no. 10, pp. 4659-4666, 2018.
    [17]Z. Wang, Y. Li, Y. Su, Y. Zhou, K. Yin, L. Cheng, T. Chang, K. Xue, S. Sze, and X. Miao, "Implementation of Functionally Complete Boolean Logic and 8-Bit Adder in CMOS Compatible 1T1R RRAMs for In-Memory Computing," in 2018 IEEE International Memory Workshop (IMW), pp. 1-4,2018.
    [18]J. J. Yang, J. Borghetti, D. Murphy, D. R. Stewart, and R. S. Williams, "A family of electronically reconfigurable nanodevices," Advanced Materials, vol. 21, no. 37, pp. 3754-3758, 2009.
    [19]H. Shima, N. Zhong, and H. Akinaga, "Switchable rectifier built with Pt/TiO x/Pt trilayer," Applied Physics Letters, vol. 94, no. 8, p. 082905, 2009.
    [20]R. Zazpe, P. Stoliar, F. Golmar, R. Llopis, F. Casanova, and L. Hueso, "Resistive switching in rectifying interfaces of metal-semiconductor-metal structures," Applied Physics Letters, vol. 103, no. 7, p. 073114, 2013.
    [21]R. Zazpe, M. Ungureanu, F. Golmar, P. Stoliar, R. Llopis, F. Casanova, D. F. Pickup, C. Rogero, and L. E. Hueso, "Resistive switching dependence on atomic layer deposition parameters in HfO2-based memory devices," Journal of Materials Chemistry C, vol. 2, no. 17, pp. 3204-3211, 2014.
    [22]M. J. Choi, H. H. Park, D. S. Jeong, J. H. Kim, J. S. Kim, and S. K. Kim, "Atomic layer deposition of HfO2 thin films using H2O2 as oxidant," Applied Surface Science, vol. 301, pp. 451-455, 2014.
    [23]J. Fu, M. Hua, S. Ding, X. Chen, R. Wu, S. Liu, J. Han, C. Wang, H. Du, Y. Yang, and J. Yang, "Stability and its mechanism in Ag/CoOx/Ag interface-type resistive switching device," Scientific Reports, Article vol. 6, p. 35630, 2016.
    [24]C. Baeumer, N. Raab, T. Menke, C. Schmitz, R. Rosezin, P. Müller, M. Andrä, V. Feyer, R. Bruchhaus, and F. Gunkel, "Verification of redox-processes as switching and retention failure mechanisms in Nb: SrTiO3/metal devices," Nanoscale, vol. 8, no. 29, pp. 13967-13975, 2016.
    [25]P. W. M. Blom, R. M. Wolf, J. F. M. Cillessen, and M. P. C. M. Krijn, "Ferroelectric Schottky Diode," Physical Review Letters, vol. 73, no. 15, pp. 2107-2110, 1994.
    [26]Z. J. Wang and Y. Bai, "Resistive Switching Behavior in Ferroelectric Heterostructures," Small, p. 1805088, 2019.
    [27]T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, and S.-W. Cheong, "Switchable ferroelectric diode and photovoltaic effect in BiFeO3," Science, vol. 324, no. 5923, pp. 63-66, 2009.
    [28]C. Wang, K. J. Jin, Z. T. Xu, L. Wang, C. Ge, H. B. Lu, H. Z. Guo, M. He, and G. Z. Yang, "Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films," Applied Physics Letters, vol. 98, no. 19, p. 192901, 2011.
    [29]S. Hong, T. Choi, J. H. Jeon, Y. Kim, H. Lee, H. Y. Joo, I. Hwang, J. S. Kim, S. O. Kang, and S. V. Kalinin, "Large Resistive Switching in Ferroelectric BiFeO3 Nano‐Island Based Switchable Diodes," Advanced Materials, vol. 25, no. 16, pp. 2339-2343, 2013.
    [30]J. Silva, J. Silva, K. Sekhar, M. Pereira, and M. Gomes, "Impact of the ferroelectric layer thickness on the resistive switching characteristics of ferroelectric/dielectric structures," Applied Physics Letters, vol. 113, no. 10, p. 102904, 2018.
    [31]H. Kohlstedt, A. Petraru, K. Szot, A. Rüdiger, P. Meuffels, H. Haselier, R. Waser, and V. Nagarajan, "Method to distinguish ferroelectric from nonferroelectric origin in case of resistive switching in ferroelectric capacitors," Applied Physics Letters, vol. 92, no. 6, p. 062907, 2008.
    [32]L. Pintilie and M. Alexe, "Metal-ferroelectric-metal heterostructures with Schottky contacts. I. Influence of the ferroelectric properties," Journal of applied physics, vol. 98, no. 12, p. 124103, 2005.
    [33]M. Vagadia, A. Ravalia, P. Solanki, R. Choudhary, D. Phase, and D. Kuberkar, "Improvement in resistive switching of Ba-doped BiFeO3 films," Applied Physics Letters, vol. 103, no. 3, p. 033504, 2013.
    [34]M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, and J. M. Liu, "Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies," Advanced Electronic Materials, vol. 1, no. 6, p. 1500069, 2015.
    [35]J. Tian, Z. Tan, Z. Fan, D. Zheng, Y. Wang, Z. Chen, F. Sun, D. Chen, M. Qin, and M. Zeng, "Depolarization-Field-Induced Retention Loss in Ferroelectric Diodes," Physical Review Applied, vol. 11, no. 2, p. 024058, 2019.
    [36]T. Ma and J. P. Han, "Why is nonvolatile ferroelectric memory field-effect transistor still elusive?," IEEE Electron Device Letters, vol. 23, no. 7, pp. 386-388, 2002.
    [37]J. P. B. Silva, F. L. Faita, K. Kamakshi, K. C. Sekhar, J. A. Moreira, A. Almeida, M. Pereira, A. A. Pasa, and M. J. M. Gomes, "Enhanced resistive switching characteristics in Pt/BaTiO3/ITO structures through insertion of HfO2:Al2O3 (HAO) dielectric thin layer," Scientific Reports, Article vol. 7, p. 46350, 2017.
    [38]T. You, Y. Shuai, W. Luo, N. Du, D. Bürger, I. Skorupa, R. Hübner, S. Henker, C. Mayr, and R. Schüffny, "Exploiting memristive BiFeO3 bilayer structures for compact sequential logics," Advanced functional materials, vol. 24, no. 22, pp. 3357-3365, 2014.
    [39]T. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, "Ferroelectricity in hafnium oxide thin films," Applied Physics Letters, vol. 99, no. 10, p. 102903, 2011.
    [40]M. Mai, C. Zhu, G. Liu, and X. Ma, "Effect of dielectric layer on ferroelectric responses of P (VDF-TrFE) thin films," Physics Letters A, vol. 382, no. 34, pp. 2372-2375, 2018.
    [41]F. De Stefano, M. Houssa, J. Kittl, M. Jurczak, V. Afanas’ ev, and A. Stesmans, "Semiconducting-like filament formation in TiN/HfO2/TiN resistive switching random access memories," Applied Physics Letters, vol. 100, no. 14, p. 142102, 2012.
    [42]S. Capone, G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. Alvisi, L. Mirenghi, and A. Rizzo, "Physical characterization of hafnium oxide thin films and their application as gas sensing devices," Journal of Vacuum Science & Technology A, vol. 16, no. 6, pp. 3564-3568, 1998.
    [43]J. Gavartin, D. Muñoz Ramo, A. Shluger, G. Bersuker, and B. Lee, "Negative oxygen vacancies in HfO2 as charge traps in high-k stacks," Applied Physics Letters, vol. 89, no. 8, p. 082908, 2006.
    [44]S. Muhammady, Y. Kurniawan, Suryana, N. m. Azizah, and Y. Darma, "The effect of co-existing cations on optical conductivity and absorption in Hf0.5Zr0.5O2 system: A first-principles study," Journal of Physics: Conference Series, vol. 1153, p. 012082, 2019.
    [45]S. M. Sze and K. K. Ng, Physics of semiconductor devices, 3rd ed. John wiley & sons, 2006.
    [46]Y. Zhou, Y. Li, L. Xu, S. Zhong, H. Sun, and X. Miao, "16 Boolean logics in three steps with two anti-serially connected memristors," Applied Physics Letters, vol. 106, no. 23, p. 233502, 2015.
    [47]D. B. Strukov and R. S. Williams, "Exponential ionic drift: fast switching and low volatility of thin-film memristors," Applied Physics A, journal article vol. 94, no. 3, pp. 515-519, 2009.
    [48]T. You, N. Du, S. Slesazeck, T. Mikolajick, G. Li, D. Bürger, I. Skorupa, H. Stöcker, B. Abendroth, and A. Beyer, "Bipolar electric-field enhanced trapping and detrapping of mobile donors in BiFeO3 memristors," ACS applied materials & interfaces, vol. 6, no. 22, pp. 19758-19765, 2014.
    [49]X. Zhang, S. Liu, X. Zhao, F. Wu, Q. Wu, W. Wang, R. Cao, Y. Fang, H. Lv, and S. Long, "Emulating short-term and long-term plasticity of bio-synapse based on Cu/a-Si/Pt memristor," IEEE Electron Device Letters, vol. 38, no. 9, pp. 1208-1211, 2017.

    QR CODE